Handbook of Multi-Commodity Markets and Products (eBook, PDF)
Structuring, Trading and Risk Management
Alle Infos zum eBook verschenken
Handbook of Multi-Commodity Markets and Products (eBook, PDF)
Structuring, Trading and Risk Management
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Handbook of Multi-Commodity Markets and Products Over recent decades, the marketplace has seen an increasing integration, not only among different types of commodity markets such as energy, agricultural, and metals, but also with financial markets. This trend raises important questions about how to identify and analyse opportunities in and manage risks of commodity products. The Handbook of Multi-Commodity Markets and Products offers traders, commodity brokers, and other professionals a practical and comprehensive manual that covers market structure and functioning, as well as the practice of…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 48.35MB
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 1064
- Erscheinungstermin: 17. Februar 2015
- Englisch
- ISBN-13: 9780470662502
- Artikelnr.: 42319905
- Verlag: John Wiley & Sons
- Seitenzahl: 1064
- Erscheinungstermin: 17. Februar 2015
- Englisch
- ISBN-13: 9780470662502
- Artikelnr.: 42319905
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
0tW(s)dW(s) 568 11.2.5 Properties of the Stochastic Integral 569 11.2.6 It
o Process and Stochastic Differential Equations 571 11.2.7 Solving Stochastic Integrals and/or Stochastic Differential Equations 573 11.3 Introducing It
's Formula 575 11.3.1 A Fact from Ordinary Calculus 576 11.3.2 It
o's Formula when Y = g(x), g(x)
C2 576 11.3.3 Guiding Principle 577 11.3.4 It
o's Formula when Y(t) = g(t, X), g(t, X)
C1,2 577 11.3.5 The Multivariate It
o's Lemma when Z = g(t, X, Y) 578 11.4 Important SDEs 581 11.4.1 The Geometric Brownian Motion GBM(
,
) 581 11.4.2 The Vasicek Mean-Reverting Process 588 11.4.3 The Cox-Ingersoll-Ross (CIR) Model 595 11.4.4 The Constant Elasticity of Variance (CEV) Model 604 11.4.5 The Brownian Bridge 607 11.4.6 The Stochastic Volatility Heston Model (1987) 611 11.5 Stochastic Processes with Jumps 618 11.5.1 Preliminaries 618 11.5.2 Jump Diffusion Processes 623 11.5.3 Time-Changed Brownian Motion 628 11.5.4 Final Remark: Lévy Processes 632 References 633 Further Reading 633 Chapter 12 Estimating Commodity Term Structure Volatilities 635 Andrea Roncoroni, Rachid Id Brik and Mark Cummins 12.1 Introduction 635 12.2 Model Estimation Using the Kalman Filter 635 12.2.1 Description of the Methodology 636 12.2.2 Case Study: Estimating Parameters on Crude Oil 642 12.3 Principal Components Analysis 646 12.3.1 PCA: Technical Presentation 647 12.3.2 Case Study: Risk Analysis on Energy Markets 651 12.4 Conclusion 655 Appendix 655 References 657 Chapter 13 Nonparametric Estimation of Energy and Commodity Price Processes 659 Gianna Fig`a-Talamanca and Andrea Roncoroni 13.1 Introduction 659 13.2 Estimation Method 660 13.3 Empirical Results 663 References 672 Chapter 14 How to Build Electricity Forward Curves 673 Ruggero Caldana, Gianluca Fusai and Andrea Roncoroni 14.1 Introduction 673 14.2 Review of the Literature 674 14.3 Electricity Forward Contracts 675 14.4 Smoothing Forward Price Curves 677 14.5 An Illustrative Example: Daily Forward Curve 679 14.6 Conclusion 684 References 684 Chapter 15 GARCH Models for Commodity Markets 687 Eduardo Rossi and Filippo Spazzini 15.1 Introduction 687 15.2 The GARCH Model: General Definition 690 15.2.1 The ARCH(q) Model 692 15.2.2 The GARCH(p,q) Model 693 15.2.3 The Yule-Walker Equations for the Squared Process 695 15.2.4 Stationarity of the GARCH(p,q) 696 15.2.5 Forecasting Volatility with GARCH 698 15.3 The IGARCH(p,q) Model 699 15.4 A Permanent and Transitory Component Model of Volatility 700 15.5 Asymmetric Models 702 15.5.1 The EGARCH(p,q) Model 702 15.5.2 Other Asymmetric Models 704 15.5.3 The News Impact Curve 706 15.6 Periodic GARCH 707 15.6.1 Periodic EGARCH 708 15.7 Nesting Models 708 15.8 Long-Memory GARCH Models 713 15.8.1 The FIGARCH Model 716 15.8.2 The FIEGARCH Model 719 15.9 Estimation 720 15.9.1 Likelihood Computation 720 15.10 Inference 722 15.10.1 Testing for ARCH Effects 722 15.10.2 Test for Asymmetric Effects 723 15.11 Multivariate GARCH 725 15.11.1 BEKK Parameterization of MGARCH 726 15.11.2 The Dynamic Conditional Correlation Model 726 15.12 Empirical Applications 727 15.12.1 Univariate Volatility Modelling 727 15.12.2 A Simple Risk Measurement Application: A Bivariate Example with Copulas 733 15.13 Software 740 References 748 Chapter 16 Pricing Commodity Swaps with Counterparty Credit Risk: The Case of Credit Value Adjustment 755 Marina Marena, Gianluca Fusai and Chiara Quaglini 16.1 Introduction 755 16.1.1 Energy Company Strategies in Derivative Instruments 755 16.2 Company Energy Policy 756 16.2.1 Commodity Risk 756 16.2.2 Credit Risk 757 16.3 A Focus on Commodity Swap Contracts 758 16.3.1 Definition and Main Features of a Commodity Swap 758 16.4 Modelling the Dynamics of Oil Spot Prices and the Forward Curve 760 16.4.1 The Schwartz and Smith Pricing Model 760 16.5 An Empirical Application 764 16.5.1 The Commodity Swap Features 764 16.5.2 Calibration of the Theoretical Schwartz and Smith Forward Curve 765 16.5.3 The Monte Carlo Simulation of Oil Spot Prices 772 16.5.4 The Computation of Brent Forward Curves at Any Given Valuation Date 773 16.6 Measuring Counterparty Risk 777 16.6.1 CVA Calculation 779 16.6.2 Swap Fixed Price Adjustment for Counterparty Risk 782 16.6.3 Right- and Wrong-Way Risk 784 16.7 Sensitivity Analysis 788 16.8 Accounting for Derivatives and Credit Value Adjustments 788 16.8.1 Example of Hedge Effectiveness 791 16.8.2 Accounting for CVA 796 16.9 Conclusions 797 References 798 Further Reading 798 Chapter 17 Pricing Energy Spread Options 801 Fred Espen Benth and Hanna Zdanowicz 17.1 Spread Options in Energy Markets 801 17.2 Pricing of Spread Options with Zero Strike 805 17.3 Issues of hedging 813 17.4 Pricing of Spread Options with Nonzero Strike 815 17.4.1 Kirk's Approximation Formula 817 17.4.2 Approximation by Margrabe Based on Taylor Expansion 820 17.4.3 Other Pricing Methods 823 Acknowledgement 824 References 825 Chapter 18 Asian Options: Payoffs and Pricing Models 827 Gianluca Fusai, Marina Marena and Giovanni Longo 18.1 Payoff Structures 832 18.2 Pricing Asian Options in the Lognormal Setting 833 18.2.1 Moment Matching 835 18.2.2 Lower Price Bound 844 18.2.3 Monte carlo simulation 845 18.3 A Comparison 856 18.4 The Flexible Square-Root Model 858 18.4.1 General Setup 861 18.4.2 Numerical Results 870 18.4.3 A Case Study 871 18.5 Conclusions 874 References 874 Chapter 19 Natural Gas Storage Modelling 877 A
lvaro Cartea, James Cheeseman and Sebastian Jaimungal 19.1 Introduction 877 19.2 A Simple Model of Storage, Futures Prices, Spot Prices And Convenience Yield 878 19.3 Valuation of Gas Storage 880 19.3.1 Least-Squares Monte Carlo 881 19.3.2 LSMC Greeks 883 19.3.3 Extending the LSMC to Price Gas Storage 883 19.3.4 Toy Storage Model 884 19.3.5 Storage LSMC 888 19.3.6 Swing Options 890 19.3.7 Closed-Form Storage Solution 891 19.3.8 Monte Carlo Convergence 892 19.3.9 Simulated Storage Operations 894 19.3.10 Storage Value 897 References 899 Chapter 20 Commodity-Linked Arbitrage Strategies and Portfolio Management 901 Viviana Fanelli 20.1 Commodity-Linked Arbitrage Strategies 902 20.1.1 The Efficient Market Hypothesis 902 20.1.2 Risk Arbitrage Opportunities in Commodity Markets 903 20.1.3 Basic Quantitative Trading Strategies 906 20.1.4 A General Statistical Arbitrage Trading Methodology 914 20.2 Portfolio Optimization with Commodities 921 20.2.1 Commodities as an Asset Class 921 20.2.2 Commodity Futures Return Characteristics 923 20.2.3 Risk Premiums in Commodity Markets 925 20.2.4 Commodities as a Portfolio Diversifier 928 20.2.5 Risk-Return Optimization in Commodity Portfolios 929 Symbols 936 References 936 Chapter 21 Econometric Analysis of Energy and Commodity Markets: Multiple Hypothesis Testing Techniques 939 Mark Cummins 21.1 Introduction 939 21.2 Multiple Hypothesis Testing 940 21.2.1 Generalized Familywise Error Rate 941 21.2.2 Per-Familywise Error Rate 942 21.2.3 False Discovery Proportion 942 21.2.4 False Discovery Rate 943 21.2.5 Single-Step and Stepwise Procedures 943 21.3 Energy-Emissions Market Interactions 943 21.3.1 Literature Review 943 21.3.2 Data Description 944 21.3.3 Testing Framework 945 21.3.4 Empirical Results 950 21.4 Emissions Market Interactions 953 21.4.1 Testing Framework and Data 953 21.4.2 Empirical Results 955 21.5 Quantitative Spread Trading in Oil Markets 956 21.5.1 Testing Framework and Data 956 21.5.2 Optimal Statistical Arbitrage Model 957 21.5.3 Resampling-Based MHT Procedures 959 21.5.4 Empirical Results 964 References 964 Appendix A Quick Review of Distributions Relevant in Finance with Matlab® Examples 967 Laura Ballotta and Gianluca Fusai Index 1005
0tW(s)dW(s) 568 11.2.5 Properties of the Stochastic Integral 569 11.2.6 It
o Process and Stochastic Differential Equations 571 11.2.7 Solving Stochastic Integrals and/or Stochastic Differential Equations 573 11.3 Introducing It
's Formula 575 11.3.1 A Fact from Ordinary Calculus 576 11.3.2 It
o's Formula when Y = g(x), g(x)
C2 576 11.3.3 Guiding Principle 577 11.3.4 It
o's Formula when Y(t) = g(t, X), g(t, X)
C1,2 577 11.3.5 The Multivariate It
o's Lemma when Z = g(t, X, Y) 578 11.4 Important SDEs 581 11.4.1 The Geometric Brownian Motion GBM(
,
) 581 11.4.2 The Vasicek Mean-Reverting Process 588 11.4.3 The Cox-Ingersoll-Ross (CIR) Model 595 11.4.4 The Constant Elasticity of Variance (CEV) Model 604 11.4.5 The Brownian Bridge 607 11.4.6 The Stochastic Volatility Heston Model (1987) 611 11.5 Stochastic Processes with Jumps 618 11.5.1 Preliminaries 618 11.5.2 Jump Diffusion Processes 623 11.5.3 Time-Changed Brownian Motion 628 11.5.4 Final Remark: Lévy Processes 632 References 633 Further Reading 633 Chapter 12 Estimating Commodity Term Structure Volatilities 635 Andrea Roncoroni, Rachid Id Brik and Mark Cummins 12.1 Introduction 635 12.2 Model Estimation Using the Kalman Filter 635 12.2.1 Description of the Methodology 636 12.2.2 Case Study: Estimating Parameters on Crude Oil 642 12.3 Principal Components Analysis 646 12.3.1 PCA: Technical Presentation 647 12.3.2 Case Study: Risk Analysis on Energy Markets 651 12.4 Conclusion 655 Appendix 655 References 657 Chapter 13 Nonparametric Estimation of Energy and Commodity Price Processes 659 Gianna Fig`a-Talamanca and Andrea Roncoroni 13.1 Introduction 659 13.2 Estimation Method 660 13.3 Empirical Results 663 References 672 Chapter 14 How to Build Electricity Forward Curves 673 Ruggero Caldana, Gianluca Fusai and Andrea Roncoroni 14.1 Introduction 673 14.2 Review of the Literature 674 14.3 Electricity Forward Contracts 675 14.4 Smoothing Forward Price Curves 677 14.5 An Illustrative Example: Daily Forward Curve 679 14.6 Conclusion 684 References 684 Chapter 15 GARCH Models for Commodity Markets 687 Eduardo Rossi and Filippo Spazzini 15.1 Introduction 687 15.2 The GARCH Model: General Definition 690 15.2.1 The ARCH(q) Model 692 15.2.2 The GARCH(p,q) Model 693 15.2.3 The Yule-Walker Equations for the Squared Process 695 15.2.4 Stationarity of the GARCH(p,q) 696 15.2.5 Forecasting Volatility with GARCH 698 15.3 The IGARCH(p,q) Model 699 15.4 A Permanent and Transitory Component Model of Volatility 700 15.5 Asymmetric Models 702 15.5.1 The EGARCH(p,q) Model 702 15.5.2 Other Asymmetric Models 704 15.5.3 The News Impact Curve 706 15.6 Periodic GARCH 707 15.6.1 Periodic EGARCH 708 15.7 Nesting Models 708 15.8 Long-Memory GARCH Models 713 15.8.1 The FIGARCH Model 716 15.8.2 The FIEGARCH Model 719 15.9 Estimation 720 15.9.1 Likelihood Computation 720 15.10 Inference 722 15.10.1 Testing for ARCH Effects 722 15.10.2 Test for Asymmetric Effects 723 15.11 Multivariate GARCH 725 15.11.1 BEKK Parameterization of MGARCH 726 15.11.2 The Dynamic Conditional Correlation Model 726 15.12 Empirical Applications 727 15.12.1 Univariate Volatility Modelling 727 15.12.2 A Simple Risk Measurement Application: A Bivariate Example with Copulas 733 15.13 Software 740 References 748 Chapter 16 Pricing Commodity Swaps with Counterparty Credit Risk: The Case of Credit Value Adjustment 755 Marina Marena, Gianluca Fusai and Chiara Quaglini 16.1 Introduction 755 16.1.1 Energy Company Strategies in Derivative Instruments 755 16.2 Company Energy Policy 756 16.2.1 Commodity Risk 756 16.2.2 Credit Risk 757 16.3 A Focus on Commodity Swap Contracts 758 16.3.1 Definition and Main Features of a Commodity Swap 758 16.4 Modelling the Dynamics of Oil Spot Prices and the Forward Curve 760 16.4.1 The Schwartz and Smith Pricing Model 760 16.5 An Empirical Application 764 16.5.1 The Commodity Swap Features 764 16.5.2 Calibration of the Theoretical Schwartz and Smith Forward Curve 765 16.5.3 The Monte Carlo Simulation of Oil Spot Prices 772 16.5.4 The Computation of Brent Forward Curves at Any Given Valuation Date 773 16.6 Measuring Counterparty Risk 777 16.6.1 CVA Calculation 779 16.6.2 Swap Fixed Price Adjustment for Counterparty Risk 782 16.6.3 Right- and Wrong-Way Risk 784 16.7 Sensitivity Analysis 788 16.8 Accounting for Derivatives and Credit Value Adjustments 788 16.8.1 Example of Hedge Effectiveness 791 16.8.2 Accounting for CVA 796 16.9 Conclusions 797 References 798 Further Reading 798 Chapter 17 Pricing Energy Spread Options 801 Fred Espen Benth and Hanna Zdanowicz 17.1 Spread Options in Energy Markets 801 17.2 Pricing of Spread Options with Zero Strike 805 17.3 Issues of hedging 813 17.4 Pricing of Spread Options with Nonzero Strike 815 17.4.1 Kirk's Approximation Formula 817 17.4.2 Approximation by Margrabe Based on Taylor Expansion 820 17.4.3 Other Pricing Methods 823 Acknowledgement 824 References 825 Chapter 18 Asian Options: Payoffs and Pricing Models 827 Gianluca Fusai, Marina Marena and Giovanni Longo 18.1 Payoff Structures 832 18.2 Pricing Asian Options in the Lognormal Setting 833 18.2.1 Moment Matching 835 18.2.2 Lower Price Bound 844 18.2.3 Monte carlo simulation 845 18.3 A Comparison 856 18.4 The Flexible Square-Root Model 858 18.4.1 General Setup 861 18.4.2 Numerical Results 870 18.4.3 A Case Study 871 18.5 Conclusions 874 References 874 Chapter 19 Natural Gas Storage Modelling 877 A
lvaro Cartea, James Cheeseman and Sebastian Jaimungal 19.1 Introduction 877 19.2 A Simple Model of Storage, Futures Prices, Spot Prices And Convenience Yield 878 19.3 Valuation of Gas Storage 880 19.3.1 Least-Squares Monte Carlo 881 19.3.2 LSMC Greeks 883 19.3.3 Extending the LSMC to Price Gas Storage 883 19.3.4 Toy Storage Model 884 19.3.5 Storage LSMC 888 19.3.6 Swing Options 890 19.3.7 Closed-Form Storage Solution 891 19.3.8 Monte Carlo Convergence 892 19.3.9 Simulated Storage Operations 894 19.3.10 Storage Value 897 References 899 Chapter 20 Commodity-Linked Arbitrage Strategies and Portfolio Management 901 Viviana Fanelli 20.1 Commodity-Linked Arbitrage Strategies 902 20.1.1 The Efficient Market Hypothesis 902 20.1.2 Risk Arbitrage Opportunities in Commodity Markets 903 20.1.3 Basic Quantitative Trading Strategies 906 20.1.4 A General Statistical Arbitrage Trading Methodology 914 20.2 Portfolio Optimization with Commodities 921 20.2.1 Commodities as an Asset Class 921 20.2.2 Commodity Futures Return Characteristics 923 20.2.3 Risk Premiums in Commodity Markets 925 20.2.4 Commodities as a Portfolio Diversifier 928 20.2.5 Risk-Return Optimization in Commodity Portfolios 929 Symbols 936 References 936 Chapter 21 Econometric Analysis of Energy and Commodity Markets: Multiple Hypothesis Testing Techniques 939 Mark Cummins 21.1 Introduction 939 21.2 Multiple Hypothesis Testing 940 21.2.1 Generalized Familywise Error Rate 941 21.2.2 Per-Familywise Error Rate 942 21.2.3 False Discovery Proportion 942 21.2.4 False Discovery Rate 943 21.2.5 Single-Step and Stepwise Procedures 943 21.3 Energy-Emissions Market Interactions 943 21.3.1 Literature Review 943 21.3.2 Data Description 944 21.3.3 Testing Framework 945 21.3.4 Empirical Results 950 21.4 Emissions Market Interactions 953 21.4.1 Testing Framework and Data 953 21.4.2 Empirical Results 955 21.5 Quantitative Spread Trading in Oil Markets 956 21.5.1 Testing Framework and Data 956 21.5.2 Optimal Statistical Arbitrage Model 957 21.5.3 Resampling-Based MHT Procedures 959 21.5.4 Empirical Results 964 References 964 Appendix A Quick Review of Distributions Relevant in Finance with Matlab® Examples 967 Laura Ballotta and Gianluca Fusai Index 1005