Handbook of Quantitative Methods for Detecting Cheating on Tests (eBook, PDF)
Redaktion: Cizek, Gregory J.; Wollack, James A.
109,95 €
109,95 €
inkl. MwSt.
Sofort per Download lieferbar
55 °P sammeln
109,95 €
Als Download kaufen
109,95 €
inkl. MwSt.
Sofort per Download lieferbar
55 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
109,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
55 °P sammeln
Handbook of Quantitative Methods for Detecting Cheating on Tests (eBook, PDF)
Redaktion: Cizek, Gregory J.; Wollack, James A.
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The Handbook of Quantitative Methods for Detecting Cheating on Tests is a comprehensive book that describes the variety of ways people cheat and the quantitative methods that have been developed to detect and combat them.
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 6.16MB
Andere Kunden interessierten sich auch für
- Handbook of Quantitative Methods for Detecting Cheating on Tests (eBook, ePUB)109,95 €
- Ivor F. GoodsonDeveloping Narrative Theory (eBook, PDF)39,95 €
- Isabel NisbetEducational Assessment in a Changing World (eBook, PDF)37,95 €
- David WilkinsonThe Researcher's Toolkit (eBook, PDF)26,95 €
- Louis CohenResearch Methods in Education (eBook, PDF)49,95 €
- Peter J. BurkeThe Elements of Inquiry (eBook, PDF)42,95 €
- Michael RussellSystemic Racism and Educational Measurement (eBook, PDF)46,95 €
-
-
-
The Handbook of Quantitative Methods for Detecting Cheating on Tests is a comprehensive book that describes the variety of ways people cheat and the quantitative methods that have been developed to detect and combat them.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 444
- Erscheinungstermin: 26. Oktober 2016
- Englisch
- ISBN-13: 9781317588108
- Artikelnr.: 46911063
- Verlag: Taylor & Francis
- Seitenzahl: 444
- Erscheinungstermin: 26. Oktober 2016
- Englisch
- ISBN-13: 9781317588108
- Artikelnr.: 46911063
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Gregory J. Cizek is the Guy B. Phillips Distinguished Professor of Educational Measurement and Evaluation in the School of Education at the University of North Carolina, Chapel Hill, USA. James A. Wollack is Professor of Quantitative Methods in the Educational Psychology Department and Director of Testing and Evaluation Services at the University of Wisconsin, Madison, USA.
Editors' Introduction
SECTION I - INTRODUCTION
Chapter 1 - Exploring Cheating on Tests: The Context, the Concern, and the
Challenges
Gregory J. Cizek and James A. Wollack
SECTION II - METHODOLOGIES FOR IDENTIFYING CHEATING ON TESTS
Section IIa - Detecting Similarity, Answer Copying, and Aberrance
Chapter 2 - Similarity, Answer Copying, and Aberrance: Understanding the
Status Quo
Cengiz Zopluoglu
Chapter 3 - Detecting Potential Collusion Among Individual Examinees Using
Similarity Analysis
Dennis D. Maynes
Chapter 4 - Identifying and Investigating Aberrant Responses Using
Psychometrics-Based and Machine Learning-Based Approaches
Doyoung Kim, Ada Woo, and Phil Dickison
Section IIb - Detecting Preknowledge and Item Compromise
Chapter 5 - Detecting Preknowledge and Item Compromise: Understanding the
Status Quo
Carol A. Eckerly
Chapter 6 - Detection of Test Collusion Using Cluster Analysis
James A. Wollack and Dennis D. Maynes
Chapter 7 - Detecting Candidate Preknowledge and Compromised Content Using
Differential Person and Item Functioning
Lisa S. O'Leary and Russell W. Smith
Chapter 8 - Identification of Item Preknowledge by the Methods of
Information Theory and Combinatorial Optimization
Dmitry Belov
Chapter 9 - Using Response Time Data to Detect Compromised Items and/or
People
Keith A. Boughton, Jessalyn Smith, and Hao Ren
Section IIc - Detecting Unusual Gain Scores and Test Tampering
Chapter 10 - Detecting Erasures and Unusual Gain Scores: Understanding the
Status Quo
Scott Bishop and Karla Egan
Chapter 11 - Detecting Test Tampering at the Group Level
James A. Wollack and Carol A. Eckerly
Chapter 12 - A Bayesian Hierarchical Model for Detecting Aberrant Growth at
the Group Level
William P. Skorupski, Joe Fitzpatrick, and Karla Egan
Chapter 13 - Using Nonlinear Regression to Identify Unusual Performance
Level Classification Rates
J. Michael Clark, William P. Skorupski, and Stephen Murphy
Chapter 14 - Detecting Unexpected Changes in Pass Rates: A Comparison of
Two Statistical Approaches
Matthew Gaertner and Yuanyuan (Malena) McBride
SECTION III - THEORY, PRACTICE, AND THE FUTURE OF QUANTITATIVE DETECTION
METHODS
Chapter 15 - Security Vulnerabilities Facing Next Generation Accountability
Testing
Joseph A. Martineau, Daniel Jurich, Jeffrey B. Hauger, and Kristen Huff
Chapter 16 - Establishing Baseline Data for Incidents of Misconduct in the
NextGen Assessment Environment
Deborah J. Harris and Chi-Yu Huang
Chapter 17 - Visual Displays of Test Fraud Data
Brett P. Foley
Chapter 18 - The Case for Bayesian Methods When Investigating Test Fraud
William P. Skorupski and Howard Wainer
Chapter 19 - When Numbers Are Not Enough: Collection and Use of Collateral
Evidence to Assess the Ethics and Professionalism of Examinees Suspected of
Test Fraud
Marc J. Weinstein
SECTION IV - CONCLUSIONS
Chapter 20 - What Have We Learned?
Lorin Mueller, Yu Zhang, and Steve Ferrara
Chapter 21 - The Future of Quantitative Methods for Detecting Cheating:
Conclusions, Cautions, and Recommendations
James A. Wollack and Gregory J. Cizek
SECTION I - INTRODUCTION
Chapter 1 - Exploring Cheating on Tests: The Context, the Concern, and the
Challenges
Gregory J. Cizek and James A. Wollack
SECTION II - METHODOLOGIES FOR IDENTIFYING CHEATING ON TESTS
Section IIa - Detecting Similarity, Answer Copying, and Aberrance
Chapter 2 - Similarity, Answer Copying, and Aberrance: Understanding the
Status Quo
Cengiz Zopluoglu
Chapter 3 - Detecting Potential Collusion Among Individual Examinees Using
Similarity Analysis
Dennis D. Maynes
Chapter 4 - Identifying and Investigating Aberrant Responses Using
Psychometrics-Based and Machine Learning-Based Approaches
Doyoung Kim, Ada Woo, and Phil Dickison
Section IIb - Detecting Preknowledge and Item Compromise
Chapter 5 - Detecting Preknowledge and Item Compromise: Understanding the
Status Quo
Carol A. Eckerly
Chapter 6 - Detection of Test Collusion Using Cluster Analysis
James A. Wollack and Dennis D. Maynes
Chapter 7 - Detecting Candidate Preknowledge and Compromised Content Using
Differential Person and Item Functioning
Lisa S. O'Leary and Russell W. Smith
Chapter 8 - Identification of Item Preknowledge by the Methods of
Information Theory and Combinatorial Optimization
Dmitry Belov
Chapter 9 - Using Response Time Data to Detect Compromised Items and/or
People
Keith A. Boughton, Jessalyn Smith, and Hao Ren
Section IIc - Detecting Unusual Gain Scores and Test Tampering
Chapter 10 - Detecting Erasures and Unusual Gain Scores: Understanding the
Status Quo
Scott Bishop and Karla Egan
Chapter 11 - Detecting Test Tampering at the Group Level
James A. Wollack and Carol A. Eckerly
Chapter 12 - A Bayesian Hierarchical Model for Detecting Aberrant Growth at
the Group Level
William P. Skorupski, Joe Fitzpatrick, and Karla Egan
Chapter 13 - Using Nonlinear Regression to Identify Unusual Performance
Level Classification Rates
J. Michael Clark, William P. Skorupski, and Stephen Murphy
Chapter 14 - Detecting Unexpected Changes in Pass Rates: A Comparison of
Two Statistical Approaches
Matthew Gaertner and Yuanyuan (Malena) McBride
SECTION III - THEORY, PRACTICE, AND THE FUTURE OF QUANTITATIVE DETECTION
METHODS
Chapter 15 - Security Vulnerabilities Facing Next Generation Accountability
Testing
Joseph A. Martineau, Daniel Jurich, Jeffrey B. Hauger, and Kristen Huff
Chapter 16 - Establishing Baseline Data for Incidents of Misconduct in the
NextGen Assessment Environment
Deborah J. Harris and Chi-Yu Huang
Chapter 17 - Visual Displays of Test Fraud Data
Brett P. Foley
Chapter 18 - The Case for Bayesian Methods When Investigating Test Fraud
William P. Skorupski and Howard Wainer
Chapter 19 - When Numbers Are Not Enough: Collection and Use of Collateral
Evidence to Assess the Ethics and Professionalism of Examinees Suspected of
Test Fraud
Marc J. Weinstein
SECTION IV - CONCLUSIONS
Chapter 20 - What Have We Learned?
Lorin Mueller, Yu Zhang, and Steve Ferrara
Chapter 21 - The Future of Quantitative Methods for Detecting Cheating:
Conclusions, Cautions, and Recommendations
James A. Wollack and Gregory J. Cizek
Editors' Introduction
SECTION I - INTRODUCTION
Chapter 1 - Exploring Cheating on Tests: The Context, the Concern, and the
Challenges
Gregory J. Cizek and James A. Wollack
SECTION II - METHODOLOGIES FOR IDENTIFYING CHEATING ON TESTS
Section IIa - Detecting Similarity, Answer Copying, and Aberrance
Chapter 2 - Similarity, Answer Copying, and Aberrance: Understanding the
Status Quo
Cengiz Zopluoglu
Chapter 3 - Detecting Potential Collusion Among Individual Examinees Using
Similarity Analysis
Dennis D. Maynes
Chapter 4 - Identifying and Investigating Aberrant Responses Using
Psychometrics-Based and Machine Learning-Based Approaches
Doyoung Kim, Ada Woo, and Phil Dickison
Section IIb - Detecting Preknowledge and Item Compromise
Chapter 5 - Detecting Preknowledge and Item Compromise: Understanding the
Status Quo
Carol A. Eckerly
Chapter 6 - Detection of Test Collusion Using Cluster Analysis
James A. Wollack and Dennis D. Maynes
Chapter 7 - Detecting Candidate Preknowledge and Compromised Content Using
Differential Person and Item Functioning
Lisa S. O'Leary and Russell W. Smith
Chapter 8 - Identification of Item Preknowledge by the Methods of
Information Theory and Combinatorial Optimization
Dmitry Belov
Chapter 9 - Using Response Time Data to Detect Compromised Items and/or
People
Keith A. Boughton, Jessalyn Smith, and Hao Ren
Section IIc - Detecting Unusual Gain Scores and Test Tampering
Chapter 10 - Detecting Erasures and Unusual Gain Scores: Understanding the
Status Quo
Scott Bishop and Karla Egan
Chapter 11 - Detecting Test Tampering at the Group Level
James A. Wollack and Carol A. Eckerly
Chapter 12 - A Bayesian Hierarchical Model for Detecting Aberrant Growth at
the Group Level
William P. Skorupski, Joe Fitzpatrick, and Karla Egan
Chapter 13 - Using Nonlinear Regression to Identify Unusual Performance
Level Classification Rates
J. Michael Clark, William P. Skorupski, and Stephen Murphy
Chapter 14 - Detecting Unexpected Changes in Pass Rates: A Comparison of
Two Statistical Approaches
Matthew Gaertner and Yuanyuan (Malena) McBride
SECTION III - THEORY, PRACTICE, AND THE FUTURE OF QUANTITATIVE DETECTION
METHODS
Chapter 15 - Security Vulnerabilities Facing Next Generation Accountability
Testing
Joseph A. Martineau, Daniel Jurich, Jeffrey B. Hauger, and Kristen Huff
Chapter 16 - Establishing Baseline Data for Incidents of Misconduct in the
NextGen Assessment Environment
Deborah J. Harris and Chi-Yu Huang
Chapter 17 - Visual Displays of Test Fraud Data
Brett P. Foley
Chapter 18 - The Case for Bayesian Methods When Investigating Test Fraud
William P. Skorupski and Howard Wainer
Chapter 19 - When Numbers Are Not Enough: Collection and Use of Collateral
Evidence to Assess the Ethics and Professionalism of Examinees Suspected of
Test Fraud
Marc J. Weinstein
SECTION IV - CONCLUSIONS
Chapter 20 - What Have We Learned?
Lorin Mueller, Yu Zhang, and Steve Ferrara
Chapter 21 - The Future of Quantitative Methods for Detecting Cheating:
Conclusions, Cautions, and Recommendations
James A. Wollack and Gregory J. Cizek
SECTION I - INTRODUCTION
Chapter 1 - Exploring Cheating on Tests: The Context, the Concern, and the
Challenges
Gregory J. Cizek and James A. Wollack
SECTION II - METHODOLOGIES FOR IDENTIFYING CHEATING ON TESTS
Section IIa - Detecting Similarity, Answer Copying, and Aberrance
Chapter 2 - Similarity, Answer Copying, and Aberrance: Understanding the
Status Quo
Cengiz Zopluoglu
Chapter 3 - Detecting Potential Collusion Among Individual Examinees Using
Similarity Analysis
Dennis D. Maynes
Chapter 4 - Identifying and Investigating Aberrant Responses Using
Psychometrics-Based and Machine Learning-Based Approaches
Doyoung Kim, Ada Woo, and Phil Dickison
Section IIb - Detecting Preknowledge and Item Compromise
Chapter 5 - Detecting Preknowledge and Item Compromise: Understanding the
Status Quo
Carol A. Eckerly
Chapter 6 - Detection of Test Collusion Using Cluster Analysis
James A. Wollack and Dennis D. Maynes
Chapter 7 - Detecting Candidate Preknowledge and Compromised Content Using
Differential Person and Item Functioning
Lisa S. O'Leary and Russell W. Smith
Chapter 8 - Identification of Item Preknowledge by the Methods of
Information Theory and Combinatorial Optimization
Dmitry Belov
Chapter 9 - Using Response Time Data to Detect Compromised Items and/or
People
Keith A. Boughton, Jessalyn Smith, and Hao Ren
Section IIc - Detecting Unusual Gain Scores and Test Tampering
Chapter 10 - Detecting Erasures and Unusual Gain Scores: Understanding the
Status Quo
Scott Bishop and Karla Egan
Chapter 11 - Detecting Test Tampering at the Group Level
James A. Wollack and Carol A. Eckerly
Chapter 12 - A Bayesian Hierarchical Model for Detecting Aberrant Growth at
the Group Level
William P. Skorupski, Joe Fitzpatrick, and Karla Egan
Chapter 13 - Using Nonlinear Regression to Identify Unusual Performance
Level Classification Rates
J. Michael Clark, William P. Skorupski, and Stephen Murphy
Chapter 14 - Detecting Unexpected Changes in Pass Rates: A Comparison of
Two Statistical Approaches
Matthew Gaertner and Yuanyuan (Malena) McBride
SECTION III - THEORY, PRACTICE, AND THE FUTURE OF QUANTITATIVE DETECTION
METHODS
Chapter 15 - Security Vulnerabilities Facing Next Generation Accountability
Testing
Joseph A. Martineau, Daniel Jurich, Jeffrey B. Hauger, and Kristen Huff
Chapter 16 - Establishing Baseline Data for Incidents of Misconduct in the
NextGen Assessment Environment
Deborah J. Harris and Chi-Yu Huang
Chapter 17 - Visual Displays of Test Fraud Data
Brett P. Foley
Chapter 18 - The Case for Bayesian Methods When Investigating Test Fraud
William P. Skorupski and Howard Wainer
Chapter 19 - When Numbers Are Not Enough: Collection and Use of Collateral
Evidence to Assess the Ethics and Professionalism of Examinees Suspected of
Test Fraud
Marc J. Weinstein
SECTION IV - CONCLUSIONS
Chapter 20 - What Have We Learned?
Lorin Mueller, Yu Zhang, and Steve Ferrara
Chapter 21 - The Future of Quantitative Methods for Detecting Cheating:
Conclusions, Cautions, and Recommendations
James A. Wollack and Gregory J. Cizek