Handbook of Sharing Confidential Data (eBook, PDF)
Differential Privacy, Secure Multiparty Computation, and Synthetic Data
Redaktion: Drechsler, Jörg; Slavkovic, Aleksandra; Reiter, Jerome; Kifer, Daniel
Handbook of Sharing Confidential Data (eBook, PDF)
Differential Privacy, Secure Multiparty Computation, and Synthetic Data
Redaktion: Drechsler, Jörg; Slavkovic, Aleksandra; Reiter, Jerome; Kifer, Daniel
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
he Handbook of Sharing Confidential Data helps data stewards understand how tools from the data confidentiality literature-specifically, synthetic data, formal privacy, and secure computation-can be used to manage trade-offs in disclosure risk and data usefulness.
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Handbook of Sharing Confidential Data (eBook, ePUB)52,95 €
- Wayne A. WoodwardTime Series for Data Science (eBook, PDF)109,95 €
- Robert M. LeekleyApplied Statistics for Business and Economics (eBook, PDF)64,95 €
- John CoeneJavascript for R (eBook, PDF)52,95 €
- Jeffrey WilsonStatistical Analytics for Health Data Science with SAS and R (eBook, PDF)81,95 €
- Weiqi ZhangIntroduction to Quantitative Social Science with Python (eBook, PDF)52,95 €
- John Tuhao ChenStatistical Prediction and Machine Learning (eBook, PDF)78,95 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 342
- Erscheinungstermin: 9. Oktober 2024
- Englisch
- ISBN-13: 9781040118702
- Artikelnr.: 72273908
- Verlag: Taylor & Francis
- Seitenzahl: 342
- Erscheinungstermin: 9. Oktober 2024
- Englisch
- ISBN-13: 9781040118702
- Artikelnr.: 72273908
through Non-Statistical Methods 3. 21st Century Statistical Disclosure
Limitation: Motivations and Challenges Part 2. Formal Privacy Techniques
4. Review of Popular Algorithms for Differential Privacy 5. Privacy
Implications of Practical Model Design Choices 6. Query answering for
tabular data 7. Machine learning with differential privacy 8. Statistical
Inference and Differential Privacy 9. Systems Issues in Formally Private
Systems Part 3. Synthetic Data 10. Synthetic Data 11. Methods for Synthetic
Data Generation 12. Validation Services for Confidential Data Part 4.
Secure Multiparty Computation 13. Privacy-Preserving Distributed
Computation 14. Differential Privacy and Cryptography 15. Overview of
Secure Multi-Party Computation Applications in Health Research and Social
Sciences Part 5. Use Cases 16. Differential Privacy Implementations 17.
Synthpop a tool to enable more flexible use of sensitive data within the
Scottish Longitudinal Study 18. Safe Data Technologies: Safely Expanding
Access to Administrative Tax Data 19. Secure Federated Learning: Integrated
Statistical Modeling for Healthcare Applications
through Non-Statistical Methods 3. 21st Century Statistical Disclosure
Limitation: Motivations and Challenges Part 2. Formal Privacy Techniques
4. Review of Popular Algorithms for Differential Privacy 5. Privacy
Implications of Practical Model Design Choices 6. Query answering for
tabular data 7. Machine learning with differential privacy 8. Statistical
Inference and Differential Privacy 9. Systems Issues in Formally Private
Systems Part 3. Synthetic Data 10. Synthetic Data 11. Methods for Synthetic
Data Generation 12. Validation Services for Confidential Data Part 4.
Secure Multiparty Computation 13. Privacy-Preserving Distributed
Computation 14. Differential Privacy and Cryptography 15. Overview of
Secure Multi-Party Computation Applications in Health Research and Social
Sciences Part 5. Use Cases 16. Differential Privacy Implementations 17.
Synthpop a tool to enable more flexible use of sensitive data within the
Scottish Longitudinal Study 18. Safe Data Technologies: Safely Expanding
Access to Administrative Tax Data 19. Secure Federated Learning: Integrated
Statistical Modeling for Healthcare Applications