30,95 €
30,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
15 °P sammeln
30,95 €
30,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
15 °P sammeln
Als Download kaufen
30,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
15 °P sammeln
Jetzt verschenken
30,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
15 °P sammeln
  • Format: ePub

Discover the skill-sets required to implement various approaches to Machine Learning with PythonKey FeaturesExplore unsupervised learning with clustering, autoencoders, restricted Boltzmann machines, and moreBuild your own neural network models using modern Python librariesPractical examples show you how to implement different machine learning and deep learning techniquesBook DescriptionUnsupervised learning is about making use of raw, untagged data and applying learning algorithms to it to help a machine predict its outcome. With this book, you will explore the concept of unsupervised…mehr

  • Geräte: eReader
  • mit Kopierschutz
  • eBook Hilfe
  • Größe: 51.12MB
  • FamilySharing(5)
Produktbeschreibung
Discover the skill-sets required to implement various approaches to Machine Learning with PythonKey FeaturesExplore unsupervised learning with clustering, autoencoders, restricted Boltzmann machines, and moreBuild your own neural network models using modern Python librariesPractical examples show you how to implement different machine learning and deep learning techniquesBook DescriptionUnsupervised learning is about making use of raw, untagged data and applying learning algorithms to it to help a machine predict its outcome. With this book, you will explore the concept of unsupervised learning to cluster large sets of data and analyze them repeatedly until the desired outcome is found using Python.This book starts with the key differences between supervised, unsupervised, and semi-supervised learning. You will be introduced to the best-used libraries and frameworks from the Python ecosystem and address unsupervised learning in both the machine learning and deep learning domains. You will explore various algorithms, techniques that are used to implement unsupervised learning in real-world use cases. You will learn a variety of unsupervised learning approaches, including randomized optimization, clustering, feature selection and transformation, and information theory. You will get hands-on experience with how neural networks can be employed in unsupervised scenarios. You will also explore the steps involved in building and training a GAN in order to process images.By the end of this book, you will have learned the art of unsupervised learning for different real-world challenges.What you will learnUse cluster algorithms to identify and optimize natural groups of dataExplore advanced non-linear and hierarchical clustering in actionSoft label assignments for fuzzy c-means and Gaussian mixture modelsDetect anomalies through density estimationPerform principal component analysis using neural network modelsCreate unsupervised models using GANsWho this book is forThis book is intended for statisticians, data scientists, machine learning developers, and deep learning practitioners who want to build smart applications by implementing key building block unsupervised learning, and master all the new techniques and algorithms offered in machine learning and deep learning using real-world examples. Some prior knowledge of machine learning concepts and statistics is desirable.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.