Akihito Uchiyama
Hardy Spaces on the Euclidean Space (eBook, PDF)
40,95 €
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
40,95 €
Als Download kaufen
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
20 °P sammeln
Akihito Uchiyama
Hardy Spaces on the Euclidean Space (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Uchiyama's decomposition of BMO functions is considered the "Mount Everest of Hardy space theory". This book is based on the draft, which the author completed before his sudden death in 1997. Nowadays, his contributions are extremely influential in various fields of analysis, leading to further breakthroughs.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 15.51MB
Andere Kunden interessierten sich auch für
- -49%11Stephan RosebrockGeometrische Gruppentheorie (eBook, PDF)17,98 €
- Stephan RosebrockGeometrische Gruppentheorie (eBook, PDF)39,99 €
- -23%11Stephan RosebrockAnschauliche Gruppentheorie (eBook, PDF)26,99 €
- -20%11Helmut KochEinführung in die Mathematik (eBook, PDF)39,99 €
- -20%11Helmut KochEinführung in die Mathematik (eBook, PDF)39,99 €
- Victor P. SnaithAlgebraic K-Groups as Galois Modules (eBook, PDF)73,95 €
- Fred DiamondA First Course in Modular Forms (eBook, PDF)53,95 €
-
-
-
Uchiyama's decomposition of BMO functions is considered the "Mount Everest of Hardy space theory". This book is based on the draft, which the author completed before his sudden death in 1997. Nowadays, his contributions are extremely influential in various fields of analysis, leading to further breakthroughs.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer Japan
- Seitenzahl: 305
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9784431679059
- Artikelnr.: 44060322
- Verlag: Springer Japan
- Seitenzahl: 305
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9784431679059
- Artikelnr.: 44060322
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Foreword.- Recollections of My Good Friend, Akihito Uchiyama by Peter W. Jones.- Preface.- Introduction.- Lipschitz spaces and BMO.- Atomic H p sapces.- Atomic decomposition from grand maximal functions.- Atomic decomposition from S functions.- Hardy-Littlewood-Fefferman-Stein type inequalities, 1.- Hardy-Littlewood-Fefferman-Stein type inequalities, 2.- Hardy-Littlewood-Fefferman-Stein type inequalities, 3.- Grand maximal function from radial maximal functions.- S -functions from g -functions Good lambda inequalities for nontangential maximal functions and S -functions of harmonic functions.- A direct proof (special characters).- A direct proof of (special characters).- Subharmonicity 1.- Subharmonicity 2.- Preliminaries for characterizations of H in terms of Fourier multipliers.- Characterization of H p in terms of Riesz transforms.- Other results on the characterization of H p in terms of Fourier multipliers.- Fefferman's original proof of (special characters).- Varopoulos's proof of the above inequality.- The Fefferman-Stein decomposition of BMO.- A constructive proof of the Fefferman-Stein decomposition of BMO.- Vector-valued unimodular BMO functions.- Extensions of the Fefferman-Stein decomposition of BMO, 1.- Characterization of H 1 in terms of Fourier multipliers.- Extension of the Fefferman-Stein decomposition of BMO, 2.- Characterization of H p in terms of Fourier multipliers.- The one-dimensional case.- Appendix.- References.- Index.Aus dem Inhalt: - Foreword - Recollections of My Good Friend, Akihito Uchiyama by Peter W. Jones - Preface - Introduction - Lipschitz spaces and BMO - Atomic Hp spaces - Atomic decomposition from grand maximal functions - Atomic decomposition from S functions - Hardy-Littlewood-Fefferman-Stein type inequalities, 1 - Hardy-Littlewood-Fefferman-Stein type inequalities, 2 - Hardy-Littlewood-Fefferman-Stein type inequalities, 3 - Grand maximal function from radial maximal functions - S-functions from g-functions Good lambda inequalities for nontangential maximal functions and S-functions of harmonic functions - A direct proof (special characters) - A direct proof of (special characters) - Subharmonicity 1 - Subharmonicity 2 - Preliminaries for characterizations of H in terms of Fourier multipliers - Characterization of Hp in terms of Riesz transforms - Other results on the characterization of Hp in terms of Fourier multipliers - Fefferman's original proof of (special characters) - Varopoulos's proof of the above inequality - The Fefferman-Stein decomposition of BMO - A constructive proof of the Fefferman-Stein decomposition of BMO - Vector-valued unimodular BMO functions - Extensions of the Fefferman-Stein decomposition of BMO, 1 - Characterization of H1 in terms of Fourier multipliers - Extension of the Fefferman-Stein decomposition of BMO, 2 - Characterization of Hp in terms of Fourier multipliers - The one-dimensional case - Appendix - References - Index
Foreword.- Recollections of My Good Friend, Akihito Uchiyama by Peter W. Jones.- Preface.- Introduction.- Lipschitz spaces and BMO.- Atomic H p sapces.- Atomic decomposition from grand maximal functions.- Atomic decomposition from S functions.- Hardy-Littlewood-Fefferman-Stein type inequalities, 1.- Hardy-Littlewood-Fefferman-Stein type inequalities, 2.- Hardy-Littlewood-Fefferman-Stein type inequalities, 3.- Grand maximal function from radial maximal functions.- S -functions from g -functions Good lambda inequalities for nontangential maximal functions and S -functions of harmonic functions.- A direct proof (special characters).- A direct proof of (special characters).- Subharmonicity 1.- Subharmonicity 2.- Preliminaries for characterizations of H in terms of Fourier multipliers.- Characterization of H p in terms of Riesz transforms.- Other results on the characterization of H p in terms of Fourier multipliers.- Fefferman's original proof of (special characters).- Varopoulos's proof of the above inequality.- The Fefferman-Stein decomposition of BMO.- A constructive proof of the Fefferman-Stein decomposition of BMO.- Vector-valued unimodular BMO functions.- Extensions of the Fefferman-Stein decomposition of BMO, 1.- Characterization of H 1 in terms of Fourier multipliers.- Extension of the Fefferman-Stein decomposition of BMO, 2.- Characterization of H p in terms of Fourier multipliers.- The one-dimensional case.- Appendix.- References.- Index.Aus dem Inhalt: - Foreword - Recollections of My Good Friend, Akihito Uchiyama by Peter W. Jones - Preface - Introduction - Lipschitz spaces and BMO - Atomic Hp spaces - Atomic decomposition from grand maximal functions - Atomic decomposition from S functions - Hardy-Littlewood-Fefferman-Stein type inequalities, 1 - Hardy-Littlewood-Fefferman-Stein type inequalities, 2 - Hardy-Littlewood-Fefferman-Stein type inequalities, 3 - Grand maximal function from radial maximal functions - S-functions from g-functions Good lambda inequalities for nontangential maximal functions and S-functions of harmonic functions - A direct proof (special characters) - A direct proof of (special characters) - Subharmonicity 1 - Subharmonicity 2 - Preliminaries for characterizations of H in terms of Fourier multipliers - Characterization of Hp in terms of Riesz transforms - Other results on the characterization of Hp in terms of Fourier multipliers - Fefferman's original proof of (special characters) - Varopoulos's proof of the above inequality - The Fefferman-Stein decomposition of BMO - A constructive proof of the Fefferman-Stein decomposition of BMO - Vector-valued unimodular BMO functions - Extensions of the Fefferman-Stein decomposition of BMO, 1 - Characterization of H1 in terms of Fourier multipliers - Extension of the Fefferman-Stein decomposition of BMO, 2 - Characterization of Hp in terms of Fourier multipliers - The one-dimensional case - Appendix - References - Index