123,99 €
123,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
123,99 €
Als Download kaufen
123,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
123,99 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
0 °P sammeln
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
A systematic view of hierarchical protection for smart grids, with solutions to tradition protection problems and complicated operation modes of modern power systems * Systematically investigates traditional protection problems from the bird's eye view of hierarchical protection * Focuses on multiple variable network structures and complicated operation modes * Offers comprehensive countermeasures on improving protection performance based on up-to-date research
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 22.16MB
Andere Kunden interessierten sich auch für
- Jing MaHierarchical Protection for Smart Grids (eBook, ePUB)123,99 €
- Power Grid Operation in a Market Environment (eBook, PDF)109,99 €
- Dominik PelzerA Modular Framework for Optimizing Grid Integration of Mobile and Stationary Energy Storage in Smart Grids (eBook, PDF)40,95 €
- Mathias UslarStandardization in Smart Grids (eBook, PDF)73,95 €
- Bernd M. BuchholzSmart Grids (eBook, PDF)73,95 €
- John CiufoPower System Protection (eBook, PDF)126,99 €
- Intelligent Data Mining and Analysis in Power and Energy Systems (eBook, PDF)115,99 €
-
-
-
A systematic view of hierarchical protection for smart grids, with solutions to tradition protection problems and complicated operation modes of modern power systems * Systematically investigates traditional protection problems from the bird's eye view of hierarchical protection * Focuses on multiple variable network structures and complicated operation modes * Offers comprehensive countermeasures on improving protection performance based on up-to-date research
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 472
- Erscheinungstermin: 28. März 2018
- Englisch
- ISBN-13: 9781119304838
- Artikelnr.: 52508191
- Verlag: John Wiley & Sons
- Seitenzahl: 472
- Erscheinungstermin: 28. März 2018
- Englisch
- ISBN-13: 9781119304838
- Artikelnr.: 52508191
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Zengping Wang and Jing Ma, North China Electric Power University, Beijing, China
About the Author ix
Foreword xi
Preface xiii
Introduction xv
1 Basic Theories of Power System Relay Protection 1
1.1 Introduction 1
1.2 Function of Relay Protection 1
1.3 Basic Requirements of Relay Protection 3
1.3.1 Reliability 3
1.3.2 Selectivity 4
1.3.3 Speed 4
1.3.4 Sensitivity 5
1.4 Basic Principles of Relay Protection 6
1.4.1 Over-Current Protection 6
1.4.2 Directional Current Protection 6
1.4.3 Distance Protection 7
1.5 Hierarchical Relay Protection 9
1.5.1 Local Area Protection 10
1.5.2 Substation Area Protection 11
1.5.3 Wide Area Protection 12
1.5.4 Constitution Mode of Hierarchical Relay Protection 13
1.6 Summary 15
References 15
2 Local Area Conventional Protection 17
2.1 Introduction 17
2.2 Transformer Protection 18
2.2.1 Adaptive Scheme of Discrimination between Internal Faults and Inrush Currents of Transformer Using Mathematical Morphology 18
2.2.2 Algorithm to Discriminate Internal Fault Current and Inrush Current Utilizing Variation Feature of Fundamental Current Amplitude 30
2.2.3 Identifying Transformer Inrush Current Based on Normalized Grille Curve (NGC) 39
2.2.4 Adaptive Method to Identify CT Saturation Using Grille Fractal 50
2.2.5 Algorithm for Discrimination Between Inrush Currents and Internal Faults Based on Equivalent Instantaneous Leakage Inductance 57
2.2.6 A Two-Terminal Network-Based Method for Discrimination between Internal Faults and Inrush Currents 70
2.3 Transmission Line Protection 82
2.3.1 Line Protection Scheme for Single-Phase-to-Ground Faults Based on Voltage Phase Comparison 83
2.3.2 Adaptive Distance Protection Scheme Based on the Voltage Drop Equation 99
2.3.3 Location Method for Inter-Line and Grounded Faults of Double-Circuit Transmission Lines Based on Distributed Parameters 117
2.3.4 Adaptive Overload Identification Method Based on Complex Phasor Plane 134
2.3.5 Novel Fault Phase Selection Scheme Utilizing Fault Phase Selection Factors 148
2.4 Summary 172
References 172
3 Local Area Protection for Renewable Energy 175
3.1 Introduction 175
3.2 Fault Transient Characteristics of Renewable Energy Sources 176
3.2.1 Mathematical Model and LVRT Characteristics of DFIG 177
3.2.2 DFIG Fault Transient Characteristics When the Crowbar Protection Is Not Put into Operation 178
3.2.3 DFIG Fault Transient Characteristics When the Crowbar Protection Is Put into Operation 211
3.3 Local Area Protection for Centralized Renewable Energy 230
3.3.1 Connection Form of a Wind Farm and its Protection Configuration 231
3.3.2 Adaptive Distance Protection Scheme for Wind Farm Collector Lines 233
3.3.3 Differential Protection Scheme for Wind Farm Outgoing Transmission Line 239
3.4 Local Area Protection for Distributed Renewable Energy 248
3.4.1 Adaptive Protection Approach for Distribution Network Containing Distributed Generation 248
3.4.2 Islanding Detection Method 255
3.5 Summary 269
References 270
4 Topology Analysis 273
4.1 Introduction 273
4.2 Topology Analysis for Inner Substation 273
4.2.1 Characteristic Analysis of the Main Electrical Connection 274
4.2.2 Topology Analysis Method Based on Main Electrical Wiring Characteristics 275
4.2.3 Scheme Verification 278
4.3 Topology Analysis for Inter-substation 284
Foreword xi
Preface xiii
Introduction xv
1 Basic Theories of Power System Relay Protection 1
1.1 Introduction 1
1.2 Function of Relay Protection 1
1.3 Basic Requirements of Relay Protection 3
1.3.1 Reliability 3
1.3.2 Selectivity 4
1.3.3 Speed 4
1.3.4 Sensitivity 5
1.4 Basic Principles of Relay Protection 6
1.4.1 Over-Current Protection 6
1.4.2 Directional Current Protection 6
1.4.3 Distance Protection 7
1.5 Hierarchical Relay Protection 9
1.5.1 Local Area Protection 10
1.5.2 Substation Area Protection 11
1.5.3 Wide Area Protection 12
1.5.4 Constitution Mode of Hierarchical Relay Protection 13
1.6 Summary 15
References 15
2 Local Area Conventional Protection 17
2.1 Introduction 17
2.2 Transformer Protection 18
2.2.1 Adaptive Scheme of Discrimination between Internal Faults and Inrush Currents of Transformer Using Mathematical Morphology 18
2.2.2 Algorithm to Discriminate Internal Fault Current and Inrush Current Utilizing Variation Feature of Fundamental Current Amplitude 30
2.2.3 Identifying Transformer Inrush Current Based on Normalized Grille Curve (NGC) 39
2.2.4 Adaptive Method to Identify CT Saturation Using Grille Fractal 50
2.2.5 Algorithm for Discrimination Between Inrush Currents and Internal Faults Based on Equivalent Instantaneous Leakage Inductance 57
2.2.6 A Two-Terminal Network-Based Method for Discrimination between Internal Faults and Inrush Currents 70
2.3 Transmission Line Protection 82
2.3.1 Line Protection Scheme for Single-Phase-to-Ground Faults Based on Voltage Phase Comparison 83
2.3.2 Adaptive Distance Protection Scheme Based on the Voltage Drop Equation 99
2.3.3 Location Method for Inter-Line and Grounded Faults of Double-Circuit Transmission Lines Based on Distributed Parameters 117
2.3.4 Adaptive Overload Identification Method Based on Complex Phasor Plane 134
2.3.5 Novel Fault Phase Selection Scheme Utilizing Fault Phase Selection Factors 148
2.4 Summary 172
References 172
3 Local Area Protection for Renewable Energy 175
3.1 Introduction 175
3.2 Fault Transient Characteristics of Renewable Energy Sources 176
3.2.1 Mathematical Model and LVRT Characteristics of DFIG 177
3.2.2 DFIG Fault Transient Characteristics When the Crowbar Protection Is Not Put into Operation 178
3.2.3 DFIG Fault Transient Characteristics When the Crowbar Protection Is Put into Operation 211
3.3 Local Area Protection for Centralized Renewable Energy 230
3.3.1 Connection Form of a Wind Farm and its Protection Configuration 231
3.3.2 Adaptive Distance Protection Scheme for Wind Farm Collector Lines 233
3.3.3 Differential Protection Scheme for Wind Farm Outgoing Transmission Line 239
3.4 Local Area Protection for Distributed Renewable Energy 248
3.4.1 Adaptive Protection Approach for Distribution Network Containing Distributed Generation 248
3.4.2 Islanding Detection Method 255
3.5 Summary 269
References 270
4 Topology Analysis 273
4.1 Introduction 273
4.2 Topology Analysis for Inner Substation 273
4.2.1 Characteristic Analysis of the Main Electrical Connection 274
4.2.2 Topology Analysis Method Based on Main Electrical Wiring Characteristics 275
4.2.3 Scheme Verification 278
4.3 Topology Analysis for Inter-substation 284
About the Author ix
Foreword xi
Preface xiii
Introduction xv
1 Basic Theories of Power System Relay Protection 1
1.1 Introduction 1
1.2 Function of Relay Protection 1
1.3 Basic Requirements of Relay Protection 3
1.3.1 Reliability 3
1.3.2 Selectivity 4
1.3.3 Speed 4
1.3.4 Sensitivity 5
1.4 Basic Principles of Relay Protection 6
1.4.1 Over-Current Protection 6
1.4.2 Directional Current Protection 6
1.4.3 Distance Protection 7
1.5 Hierarchical Relay Protection 9
1.5.1 Local Area Protection 10
1.5.2 Substation Area Protection 11
1.5.3 Wide Area Protection 12
1.5.4 Constitution Mode of Hierarchical Relay Protection 13
1.6 Summary 15
References 15
2 Local Area Conventional Protection 17
2.1 Introduction 17
2.2 Transformer Protection 18
2.2.1 Adaptive Scheme of Discrimination between Internal Faults and Inrush Currents of Transformer Using Mathematical Morphology 18
2.2.2 Algorithm to Discriminate Internal Fault Current and Inrush Current Utilizing Variation Feature of Fundamental Current Amplitude 30
2.2.3 Identifying Transformer Inrush Current Based on Normalized Grille Curve (NGC) 39
2.2.4 Adaptive Method to Identify CT Saturation Using Grille Fractal 50
2.2.5 Algorithm for Discrimination Between Inrush Currents and Internal Faults Based on Equivalent Instantaneous Leakage Inductance 57
2.2.6 A Two-Terminal Network-Based Method for Discrimination between Internal Faults and Inrush Currents 70
2.3 Transmission Line Protection 82
2.3.1 Line Protection Scheme for Single-Phase-to-Ground Faults Based on Voltage Phase Comparison 83
2.3.2 Adaptive Distance Protection Scheme Based on the Voltage Drop Equation 99
2.3.3 Location Method for Inter-Line and Grounded Faults of Double-Circuit Transmission Lines Based on Distributed Parameters 117
2.3.4 Adaptive Overload Identification Method Based on Complex Phasor Plane 134
2.3.5 Novel Fault Phase Selection Scheme Utilizing Fault Phase Selection Factors 148
2.4 Summary 172
References 172
3 Local Area Protection for Renewable Energy 175
3.1 Introduction 175
3.2 Fault Transient Characteristics of Renewable Energy Sources 176
3.2.1 Mathematical Model and LVRT Characteristics of DFIG 177
3.2.2 DFIG Fault Transient Characteristics When the Crowbar Protection Is Not Put into Operation 178
3.2.3 DFIG Fault Transient Characteristics When the Crowbar Protection Is Put into Operation 211
3.3 Local Area Protection for Centralized Renewable Energy 230
3.3.1 Connection Form of a Wind Farm and its Protection Configuration 231
3.3.2 Adaptive Distance Protection Scheme for Wind Farm Collector Lines 233
3.3.3 Differential Protection Scheme for Wind Farm Outgoing Transmission Line 239
3.4 Local Area Protection for Distributed Renewable Energy 248
3.4.1 Adaptive Protection Approach for Distribution Network Containing Distributed Generation 248
3.4.2 Islanding Detection Method 255
3.5 Summary 269
References 270
4 Topology Analysis 273
4.1 Introduction 273
4.2 Topology Analysis for Inner Substation 273
4.2.1 Characteristic Analysis of the Main Electrical Connection 274
4.2.2 Topology Analysis Method Based on Main Electrical Wiring Characteristics 275
4.2.3 Scheme Verification 278
4.3 Topology Analysis for Inter-substation 284
Foreword xi
Preface xiii
Introduction xv
1 Basic Theories of Power System Relay Protection 1
1.1 Introduction 1
1.2 Function of Relay Protection 1
1.3 Basic Requirements of Relay Protection 3
1.3.1 Reliability 3
1.3.2 Selectivity 4
1.3.3 Speed 4
1.3.4 Sensitivity 5
1.4 Basic Principles of Relay Protection 6
1.4.1 Over-Current Protection 6
1.4.2 Directional Current Protection 6
1.4.3 Distance Protection 7
1.5 Hierarchical Relay Protection 9
1.5.1 Local Area Protection 10
1.5.2 Substation Area Protection 11
1.5.3 Wide Area Protection 12
1.5.4 Constitution Mode of Hierarchical Relay Protection 13
1.6 Summary 15
References 15
2 Local Area Conventional Protection 17
2.1 Introduction 17
2.2 Transformer Protection 18
2.2.1 Adaptive Scheme of Discrimination between Internal Faults and Inrush Currents of Transformer Using Mathematical Morphology 18
2.2.2 Algorithm to Discriminate Internal Fault Current and Inrush Current Utilizing Variation Feature of Fundamental Current Amplitude 30
2.2.3 Identifying Transformer Inrush Current Based on Normalized Grille Curve (NGC) 39
2.2.4 Adaptive Method to Identify CT Saturation Using Grille Fractal 50
2.2.5 Algorithm for Discrimination Between Inrush Currents and Internal Faults Based on Equivalent Instantaneous Leakage Inductance 57
2.2.6 A Two-Terminal Network-Based Method for Discrimination between Internal Faults and Inrush Currents 70
2.3 Transmission Line Protection 82
2.3.1 Line Protection Scheme for Single-Phase-to-Ground Faults Based on Voltage Phase Comparison 83
2.3.2 Adaptive Distance Protection Scheme Based on the Voltage Drop Equation 99
2.3.3 Location Method for Inter-Line and Grounded Faults of Double-Circuit Transmission Lines Based on Distributed Parameters 117
2.3.4 Adaptive Overload Identification Method Based on Complex Phasor Plane 134
2.3.5 Novel Fault Phase Selection Scheme Utilizing Fault Phase Selection Factors 148
2.4 Summary 172
References 172
3 Local Area Protection for Renewable Energy 175
3.1 Introduction 175
3.2 Fault Transient Characteristics of Renewable Energy Sources 176
3.2.1 Mathematical Model and LVRT Characteristics of DFIG 177
3.2.2 DFIG Fault Transient Characteristics When the Crowbar Protection Is Not Put into Operation 178
3.2.3 DFIG Fault Transient Characteristics When the Crowbar Protection Is Put into Operation 211
3.3 Local Area Protection for Centralized Renewable Energy 230
3.3.1 Connection Form of a Wind Farm and its Protection Configuration 231
3.3.2 Adaptive Distance Protection Scheme for Wind Farm Collector Lines 233
3.3.3 Differential Protection Scheme for Wind Farm Outgoing Transmission Line 239
3.4 Local Area Protection for Distributed Renewable Energy 248
3.4.1 Adaptive Protection Approach for Distribution Network Containing Distributed Generation 248
3.4.2 Islanding Detection Method 255
3.5 Summary 269
References 270
4 Topology Analysis 273
4.1 Introduction 273
4.2 Topology Analysis for Inner Substation 273
4.2.1 Characteristic Analysis of the Main Electrical Connection 274
4.2.2 Topology Analysis Method Based on Main Electrical Wiring Characteristics 275
4.2.3 Scheme Verification 278
4.3 Topology Analysis for Inter-substation 284