Michael Reisch
High-Frequency Bipolar Transistors (eBook, PDF)
161,95 €
161,95 €
inkl. MwSt.
Sofort per Download lieferbar
81 °P sammeln
161,95 €
Als Download kaufen
161,95 €
inkl. MwSt.
Sofort per Download lieferbar
81 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
161,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
81 °P sammeln
Michael Reisch
High-Frequency Bipolar Transistors (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The book gives a detailed presentation of high-frequency bipolar transistors in silicon or silicon-germanium technology with particular emphasis given to todays advanced compact models and their physical foundations. The first part introduces the fundamentals of bipolar transistors on a graduate student level. The second part considers the physics and modeling of bipolar transistors in detail. Part 3 describes basic circuit configurations, aspects of process integration and applications.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 26.34MB
The book gives a detailed presentation of high-frequency bipolar transistors in silicon or silicon-germanium technology with particular emphasis given to todays advanced compact models and their physical foundations. The first part introduces the fundamentals of bipolar transistors on a graduate student level. The second part considers the physics and modeling of bipolar transistors in detail. Part 3 describes basic circuit configurations, aspects of process integration and applications.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 658
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9783642559006
- Artikelnr.: 53084407
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 658
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9783642559006
- Artikelnr.: 53084407
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Michael Reisch wurde 1957 im oberschwäbischen Bad Waldsee geboren. Er studierte Physik an der TU München und promovierte am Institut für Physikalische Elektronik der TU Wien. Er war von 1983 bis 1991 für die Siemens AG (Zentrale Forschung und Entwicklung) in München tätig. Seit 1991 ist er als Professor an der FH Kempten vor allem für die Lehrgebiete Werkstoffe der Elektrotechnik sowie Elektronische Bauelemente zuständig. Sein berufliches Hauptinteresse gilt der Physik und Modellierung elektronischer Bauelemente - in seiner Freizeit ist er am liebsten mit Tourenski oder Mountainbike in den Bergen unterwegs.
1. An Introductory Survey.- 1.1 History.- 1.2 Devices, Circuits, Compact Models.- 1.3 Semiconductors.- 1.4 PN Junctions.- 1.5 Bipolar Transistor Principles.- 1.6 Elementary Large-Signal Models.- 1.7 Elementary Small-Signal Models.- 1.8 Noise Modeling.- 1.9 Orders of Magnitude.- 1.10 References.- 2. Semiconductor Physics Required for Bipolar-Transistor Modeling.- 2.1 Band Structure.- 2.2 Thermal Equilibrium.- 2.3 The Boltzmann Equation.- 2.4 The Drift-Diffusion Approximation.- 2.5 Hydrodynamic Model.- 2.6 Generation and Recombination.- 2.7 Heavily Doped Semiconductors.- 2.8 Silicon Device Modeling in the Drift-Diffusion Approximation.- 2.9 References.- 3. Physics and Modeling of Bipolar Junction Transistors.- 3.1 The Regional Approach.- 3.2 Transfer Current, Early Effect.- 3.3 Emitter-Base Diode, Current Gain.- 3.4 Base-Collector Diode, Breakdown.- 3.5 Charge Storage, Transit Time.- 3.6 Series Resistances.- 3.7 High-Level Injection.- 3.8 The Gummel-Poon Model.- 3.9 Small-Signal Description.- 3.10 Figures of Merit.- 3.11 Temperature Dependences, Self-Heating.- 3.12 Parameter Extraction - DC Measurements.- 3.13 Parameter Extraction - AC Measurements.- 3.14 The VBIC Model.- 3.15 The HICUM Model.- 3.16 The MEXTRAM Model.- 3.17 References.- 4. Physics and Modeling of Heterojunction Bipolar Transistors.- 4.1 Heterojunctions.- 4.2 Heterojunction Bipolar Transistors.- 4.3 Silicon-Based Semiconductor Hctorostructures.- 4.4 SiGe HBTs.- 4.5 Compound Semiconductor HBTs.- 4.6 References.- 5. Noise Modeling.- 5.1 Noise in Semiconductors.- 5.2 Transport Theory of Noise.- 5.3 Noise of pn Junctions.- 5.4 Noise Generated by the Transfer Current.- 5.5 High-Frequency Noise Equivalent Circuit.- 5.6 Noise Figure.- 5.7 Low-Frequency Noise.- 5.8 References.- 6. Basic CircuitConfigurations.- 6.1 Common-Emitter Configuration.- 6.2 Common-Collector Configuration.- 6.3 Common-Base Configuration.- 6.4 The Diode-Connected Bipolar Transistor.- 6.5 Current Sources and Active Loads.- 6.6 Differential Amplifiers.- 6.7 Analog Multipliers.- 6.8 Two-Transistor Amplifier Stages.- 6.9 Bandgap References.- 6.10 Digital Circuits.- 6.11 References.- 7. Process Integration.- 7.1 Fabrication of Integrated npn Transistors.- 7.2 Passive Components.- 7.3 PNP Transistors.- 7.4 Reliability.- 7.5 References.- 8. Applications.- 8.1 Emitter-Coupled Logic.- 8.2 High-Speed Optical Transmission Systems.- 8.3 RF Microelectronics.- 8.4 BiCMOS.- 8.5 References.- A. Linear and Nonlinear Response.- A.1 Linear Response.- A.1.1 Step Response, Elmore Delay.- A.2 Nonlinear Systems Without Memory.- A.2.1 Harmonic Distortion, Gain Compression.- A.2.2 Intermodulation Distortion.- A.3 Nonlinear Systems with Memory.- A.3.1 Volterra Series.- A.4 References.- B. Linear Two-Ports, s-Parameters.- B.1 Indefinite Admittance Matrix.- B.2 Terminated Two-Ports.- B.2.1 Input and Output Impedance.- B.2.2 Voltage and Current Gain.- B.2.3 Power Gain.- B.2.4 Stability.- B.2.5 Incident and Reflected Power.- B.3 S-Parameters.- B.3.1 Relations between s-Parameters and Two-Port Parameters.- B.3.2 Matching and Power Gain.- B.4 References.- C. PN Junctions: Details.- C.1 Boundary Conditions at PN Junctions.- C.2 Epitaxial Diode.- C.3 Minority-Carrier Transport in Heavily Doped Emitter Regions.- C.4 High-Frequency Diode Admittance.- C.5 References.- D. Bipolar Transistor: Details.- D.1 Drift Transistor.- D.1.1 Electron Transport Through the Base Region.- D.1.3 Excess Phase.- D.1.4 Collector Transit Time.- D.1.5 Small-Signal Analysis.- D.2 Quasi-Thrce-Dimensional Computations of the Base Resistance.- D.3Generation of Model Parameters from Layout Data.- D.4 Generalization of the Gummol Transfer Current Relation to Arbitrary Geometries.- D.5 Definition of Series Resistances Within the Integral Charge Control Relation.- D.6 Multiplication Factor.- D.7 References.- E. Noise: Details.- E.1 Some Statistics.- E.1.1 Stochastic Variables, Correlation.- E.1.2 Ensemble Average, Distribution Function.- E.1.3 Spectral Density.- E.1.4 Carson Theorem, Shot Noise.- E.2 Velocity Fluctuations and Diffusion.- E.3 Thermodynamics and Noise.- E.4 Generation-Recombination Noise.- E.5 McWorther Model of 1/f Noise.- E.6 Short-Base Diode with Metal Contact.- E.7 Short-Base Diode with Polysilicon Contact.- E.8 Equivalent-Circuit Representation of Transfer Current Noise.- E.9 References.- F. Overtemperature Developed During Electrostatic Discharges.- F.1 Thermal Conductivity.- F.2 Transient Overtemperature During a Short Pulse.- F.3 References.
1. An Introductory Survey.- 1.1 History.- 1.2 Devices, Circuits, Compact Models.- 1.3 Semiconductors.- 1.4 PN Junctions.- 1.5 Bipolar Transistor Principles.- 1.6 Elementary Large-Signal Models.- 1.7 Elementary Small-Signal Models.- 1.8 Noise Modeling.- 1.9 Orders of Magnitude.- 1.10 References.- 2. Semiconductor Physics Required for Bipolar-Transistor Modeling.- 2.1 Band Structure.- 2.2 Thermal Equilibrium.- 2.3 The Boltzmann Equation.- 2.4 The Drift-Diffusion Approximation.- 2.5 Hydrodynamic Model.- 2.6 Generation and Recombination.- 2.7 Heavily Doped Semiconductors.- 2.8 Silicon Device Modeling in the Drift-Diffusion Approximation.- 2.9 References.- 3. Physics and Modeling of Bipolar Junction Transistors.- 3.1 The Regional Approach.- 3.2 Transfer Current, Early Effect.- 3.3 Emitter-Base Diode, Current Gain.- 3.4 Base-Collector Diode, Breakdown.- 3.5 Charge Storage, Transit Time.- 3.6 Series Resistances.- 3.7 High-Level Injection.- 3.8 The Gummel-Poon Model.- 3.9 Small-Signal Description.- 3.10 Figures of Merit.- 3.11 Temperature Dependences, Self-Heating.- 3.12 Parameter Extraction - DC Measurements.- 3.13 Parameter Extraction - AC Measurements.- 3.14 The VBIC Model.- 3.15 The HICUM Model.- 3.16 The MEXTRAM Model.- 3.17 References.- 4. Physics and Modeling of Heterojunction Bipolar Transistors.- 4.1 Heterojunctions.- 4.2 Heterojunction Bipolar Transistors.- 4.3 Silicon-Based Semiconductor Hctorostructures.- 4.4 SiGe HBTs.- 4.5 Compound Semiconductor HBTs.- 4.6 References.- 5. Noise Modeling.- 5.1 Noise in Semiconductors.- 5.2 Transport Theory of Noise.- 5.3 Noise of pn Junctions.- 5.4 Noise Generated by the Transfer Current.- 5.5 High-Frequency Noise Equivalent Circuit.- 5.6 Noise Figure.- 5.7 Low-Frequency Noise.- 5.8 References.- 6. Basic CircuitConfigurations.- 6.1 Common-Emitter Configuration.- 6.2 Common-Collector Configuration.- 6.3 Common-Base Configuration.- 6.4 The Diode-Connected Bipolar Transistor.- 6.5 Current Sources and Active Loads.- 6.6 Differential Amplifiers.- 6.7 Analog Multipliers.- 6.8 Two-Transistor Amplifier Stages.- 6.9 Bandgap References.- 6.10 Digital Circuits.- 6.11 References.- 7. Process Integration.- 7.1 Fabrication of Integrated npn Transistors.- 7.2 Passive Components.- 7.3 PNP Transistors.- 7.4 Reliability.- 7.5 References.- 8. Applications.- 8.1 Emitter-Coupled Logic.- 8.2 High-Speed Optical Transmission Systems.- 8.3 RF Microelectronics.- 8.4 BiCMOS.- 8.5 References.- A. Linear and Nonlinear Response.- A.1 Linear Response.- A.1.1 Step Response, Elmore Delay.- A.2 Nonlinear Systems Without Memory.- A.2.1 Harmonic Distortion, Gain Compression.- A.2.2 Intermodulation Distortion.- A.3 Nonlinear Systems with Memory.- A.3.1 Volterra Series.- A.4 References.- B. Linear Two-Ports, s-Parameters.- B.1 Indefinite Admittance Matrix.- B.2 Terminated Two-Ports.- B.2.1 Input and Output Impedance.- B.2.2 Voltage and Current Gain.- B.2.3 Power Gain.- B.2.4 Stability.- B.2.5 Incident and Reflected Power.- B.3 S-Parameters.- B.3.1 Relations between s-Parameters and Two-Port Parameters.- B.3.2 Matching and Power Gain.- B.4 References.- C. PN Junctions: Details.- C.1 Boundary Conditions at PN Junctions.- C.2 Epitaxial Diode.- C.3 Minority-Carrier Transport in Heavily Doped Emitter Regions.- C.4 High-Frequency Diode Admittance.- C.5 References.- D. Bipolar Transistor: Details.- D.1 Drift Transistor.- D.1.1 Electron Transport Through the Base Region.- D.1.3 Excess Phase.- D.1.4 Collector Transit Time.- D.1.5 Small-Signal Analysis.- D.2 Quasi-Thrce-Dimensional Computations of the Base Resistance.- D.3Generation of Model Parameters from Layout Data.- D.4 Generalization of the Gummol Transfer Current Relation to Arbitrary Geometries.- D.5 Definition of Series Resistances Within the Integral Charge Control Relation.- D.6 Multiplication Factor.- D.7 References.- E. Noise: Details.- E.1 Some Statistics.- E.1.1 Stochastic Variables, Correlation.- E.1.2 Ensemble Average, Distribution Function.- E.1.3 Spectral Density.- E.1.4 Carson Theorem, Shot Noise.- E.2 Velocity Fluctuations and Diffusion.- E.3 Thermodynamics and Noise.- E.4 Generation-Recombination Noise.- E.5 McWorther Model of 1/f Noise.- E.6 Short-Base Diode with Metal Contact.- E.7 Short-Base Diode with Polysilicon Contact.- E.8 Equivalent-Circuit Representation of Transfer Current Noise.- E.9 References.- F. Overtemperature Developed During Electrostatic Discharges.- F.1 Thermal Conductivity.- F.2 Transient Overtemperature During a Short Pulse.- F.3 References.