70,95 €
70,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
35 °P sammeln
70,95 €
70,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
35 °P sammeln
Als Download kaufen
70,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
35 °P sammeln
Jetzt verschenken
70,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
35 °P sammeln
  • Format: ePub

High-Order Models in Semantic Image Segmentation reviews recent developments in optimization-based methods for image segmentation, presenting several geometric and mathematical models that underlie a broad class of recent segmentation techniques. Focusing on impactful algorithms in the computer vision community in the last 10 years, the book includes sections on graph-theoretic and continuous relaxation techniques, which can compute globally optimal solutions for many problems. The book provides a practical and accessible introduction to these state-of -the-art segmentation techniques that is…mehr

Produktbeschreibung
High-Order Models in Semantic Image Segmentation reviews recent developments in optimization-based methods for image segmentation, presenting several geometric and mathematical models that underlie a broad class of recent segmentation techniques. Focusing on impactful algorithms in the computer vision community in the last 10 years, the book includes sections on graph-theoretic and continuous relaxation techniques, which can compute globally optimal solutions for many problems. The book provides a practical and accessible introduction to these state-of -the-art segmentation techniques that is ideal for academics, industry researchers, and graduate students in computer vision, machine learning and medical imaging.

  • Gives an intuitive and conceptual understanding of this mathematically involved subject by using a large number of graphical illustrations
  • Provides the right amount of knowledge to apply sophisticated techniques for a wide range of new applications
  • Contains numerous tables that compare different algorithms, facilitating the appropriate choice of algorithm for the intended application
  • Presents an array of practical applications in computer vision and medical imaging
  • Includes code for many of the algorithms that is available on the book's companion website

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Ismail Ben Ayed received a Ph.D. degree (with the highest honor) in the area of computer vision from the National Institute of Scientific Research (INRS-EMT), University of Quebec, Montreal, QC, Canada, in May 2007, under the guidance of Professor Amar Mitiche. Since then, he has been a research scientist with GE Healthcare, London, ON, Canada, conducting research in medical image analysis. He also holds an Adjunct Professor appointment at Western University, department of Medical Biophysics. He co-authored a book, over 50 peer-reviewed papers in reputable journals and conferences, and six patents. He received a GE recognition award in 2012 and a GE innovation award in 2010Ismail Ben Ayed is an image segmentation and optimization expert who has authored over 60 peer-reviewed articles in the field and has co-authored the book Variational and Level Set Methods in Image Segmentation, 2011, which is receiving a high citation rate.