Proceedings, U.S.-Spain Workshop held in Sant Cugat (Barcelona), Spain, June 24-30, 1985 Redaktion: Cattani, Eduardo H. C.; Puerta, Fernando; Kaplan, Aroldo; Guillen, Francisco
Proceedings, U.S.-Spain Workshop held in Sant Cugat (Barcelona), Spain, June 24-30, 1985 Redaktion: Cattani, Eduardo H. C.; Puerta, Fernando; Kaplan, Aroldo; Guillen, Francisco
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Over the past 2O years classical Hodge theory has undergone several generalizations of great interest in algebraic geometry. The papers in this volume reflect the recent developments in the areas of: mixed Hodge theory on the cohomology of singular and open varieties, on the rational homotopy of algebraic varieties, on the cohomology of a link, and on the vanishing cycles; L -realization of the intersection cohomology for the cases of singular varieties and smooth varieties with degenerating coefficients; applications of cubical hyperresolutions and of iterated integrals; asymptotic behavior…mehr
Over the past 2O years classical Hodge theory has undergone several generalizations of great interest in algebraic geometry. The papers in this volume reflect the recent developments in the areas of: mixed Hodge theory on the cohomology of singular and open varieties, on the rational homotopy of algebraic varieties, on the cohomology of a link, and on the vanishing cycles; L -realization of the intersection cohomology for the cases of singular varieties and smooth varieties with degenerating coefficients; applications of cubical hyperresolutions and of iterated integrals; asymptotic behavior of degenerating variations of Hodge structure; the geometric realization of maximal variations; and variations of mixed Hodge structure. N
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Inhaltsangabe
Shimura Varieties of Weight Two Hodge Structures.- Variations of polarized hodge structure: Asymptotics and monodromy.- Some remarks on L2 and intersection cohomologies.- The L-adic cohomology of links.- Hyperrésolutions cubiques et applications à la théorie de hodge-deligne.- Iterated integrals and mixed hodge structures on homotopy groups.- Higher albanese manifolds.- A guide to unipotent variations of mixed hodge structure.- Truncations of mixed hodge complexes.- Poincaré lemma for a variation of polarized hodge structure.- Evaluation d'integrales et theorie de hodge.- Sur les structures de hodge mixtes associées aux cycles evanescents.- L2-cohomology of algebraic varieties in the fubinu metric.- Some remarks about the hodge conjecture.
Shimura Varieties of Weight Two Hodge Structures.- Variations of polarized hodge structure: Asymptotics and monodromy.- Some remarks on L2 and intersection cohomologies.- The L-adic cohomology of links.- Hyperrésolutions cubiques et applications à la théorie de hodge-deligne.- Iterated integrals and mixed hodge structures on homotopy groups.- Higher albanese manifolds.- A guide to unipotent variations of mixed hodge structure.- Truncations of mixed hodge complexes.- Poincaré lemma for a variation of polarized hodge structure.- Evaluation d'integrales et theorie de hodge.- Sur les structures de hodge mixtes associées aux cycles evanescents.- L2-cohomology of algebraic varieties in the fubinu metric.- Some remarks about the hodge conjecture.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826