64,95 €
64,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
32 °P sammeln
64,95 €
64,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
32 °P sammeln
Als Download kaufen
64,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
32 °P sammeln
Jetzt verschenken
64,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
32 °P sammeln
  • Format: PDF

Fluid turbulence is often referred to as `the unsolved problem of classical physics'. Yet, paradoxically, its mathematical description resembles quantum field theory. The present book addresses the idealised problem posed by homogeneous, isotropic turbulence, in order to concentrate on the fundamental aspects of the general problem. It is written from the perspective of a theoretical physicist, but is designed to be accessible to all researchers in turbulence, both theoretical and experimental, and from all disciplines. The book is in three parts, and begins with a very simple overview of the…mehr

Produktbeschreibung
Fluid turbulence is often referred to as `the unsolved problem of classical physics'. Yet, paradoxically, its mathematical description resembles quantum field theory. The present book addresses the idealised problem posed by homogeneous, isotropic turbulence, in order to concentrate on the fundamental aspects of the general problem. It is written from the perspective of a theoretical physicist, but is designed to be accessible to all researchers in turbulence, both theoretical and experimental, and from all disciplines. The book is in three parts, and begins with a very simple overview of the basic statistical closure problem, along with a summary of current theoretical approaches. This is followed by a precise formulation of the statistical problem, along with a complete set of mathematical tools (as needed in the rest of the book), and a summary of the generally accepted phenomenology of the subject. Part 2 deals with current issues in phenomenology, including the role of Galilean invariance, the physics of energy transfer, and the fundamental problems inherent in numerical simulation. Part 3 deals with renormalization methods, with an emphasis on the taxonomy of the subject, rather than on lengthy mathematical derivations. The book concludes with some discussion of current lines of research and is supplemented by three appendices containing detailed mathematical treatments of the effect of isotropy on correlations, the properties of Gaussian distributions, and the evaluation of coefficients in statistical theories.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
The author has had wide experience in both engineering and physics departments. After early career experience in research and development in the nuclear power industry, he returned to university to study theoretical physics. Following the completion of a PhD in turbulence theory, he took up the post of Senior Scientific Officer in the Theoretical Physics Division at AERE, Harwell. Thereafter he held successively lectureships in engineering science and physics, a readership in physics, and a personal chair in statistical physics at Edinburgh University. On his retirement in 2006, he was appointed Professor Emeritus, and now also holds a Senior Professorial Fellowship. He has been guest professor at the University of Delft, and visiting fellow at Wolfson College and the Isaac Newton Institute, Cambridge. During the period 2007-09 he held a Leverhulme Emeritus Fellowship.