Homogenization and Porous Media (eBook, PDF)
Redaktion: Hornung, Ulrich
73,95 €
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
37 °P sammeln
73,95 €
Als Download kaufen
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
37 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
73,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
37 °P sammeln
Homogenization and Porous Media (eBook, PDF)
Redaktion: Hornung, Ulrich
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book offers a systematic, rigorous treatment of upscaling procedures related to physical modeling for porous media on micro-, meso- and macro-scales, including detailed studies of micro-structure systems and computational results for dual-porosity models.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 35.33MB
Andere Kunden interessierten sich auch für
- Robert E. MegginsonAn Introduction to Banach Space Theory (eBook, PDF)57,95 €
- Gianni Dal MasoComposite Media and Homogenization Theory (eBook, PDF)40,95 €
- Grigoris PavliotisMultiscale Methods (eBook, PDF)65,95 €
- J. K. KevorkianMultiple Scale and Singular Perturbation Methods (eBook, PDF)137,95 €
- Nonlinear Equations: Methods, Models and Applications (eBook, PDF)73,95 €
- The Geometry of Hamiltonian Systems (eBook, PDF)73,95 €
- Brian DaviesIntegral Transforms and Their Applications (eBook, PDF)89,95 €
-
-
-
This book offers a systematic, rigorous treatment of upscaling procedures related to physical modeling for porous media on micro-, meso- and macro-scales, including detailed studies of micro-structure systems and computational results for dual-porosity models.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer New York
- Seitenzahl: 279
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461219200
- Artikelnr.: 44178715
- Verlag: Springer New York
- Seitenzahl: 279
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461219200
- Artikelnr.: 44178715
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1 Introduction.- 1.1 Basic Idea.- 1.2 First Examples.- 1.3 Diffusion in Periodic Media.- 1.4 Formal Derivation of Darcy's Law.- 1.5 Formal Derivation of a Distributed Microstructure Model.- 1.6 Remarks on Networks of Resistors, Capillary Tubes, and Cracks.- 2 Percolation Models for Porous Media.- 2.1 Fundamentals of Percolation Theory.- 2.2 Exponent Inequalities for Random Flow and Resistor Networks.- 2.3 Critical Path Analysis in Highly Disordered Porous and Conducting Media.- 3 One-Phase Newtonian Flow.- 3.1 Derivation of Darcy's Law.- 3.2 Inertia Effects.- 3.3 Derivation of Brinkman's Law.- 3.4 Double Permeability.- 3.5 On the Transmission Conditions at the Contact Interface between a Porous Medium and a Free Fluid.- 4 Non-Newtonian Flow.- 4.1 Introduction.- 4.2 Equations Governing Creeping Flow of a Quasi-Newtonian Fluid.- 4.3 Description of a Periodic s-Geometry, Construction of the Restriction Operator, and Review of the Results of Two-Scale Convergence in Lq-Spaces.- 4.4 Statement of the Principal Results.- 4.5 Inertia Effects for Non-Newtonian Flows through Porous Media.- 4.6 Proof of the Uniqueness Theorems.- 4.7 Uniform A Priori Estimates.- 4.8 Proof of Theorem A.- 4.9 Proof of Theorem B.- 4.10 Conclusion.- 5 Two-Phase Flow.- 5.1 Derivation of the Generalized Nonlinear Darcy Law.- 5.2 Upscaling Two-Phase Flow Characteristics in a Heterogeneous Reservoir with Capillary Forces (Finite Peclet Number).- 5.3 Upscaling Two-Phase Flow Characteristics in a Heterogeneous Core, Neglecting Capillary Effects (Infinite Peclet Number).- 5.4 The Double-Porosity Model of Immiscible Two-Phase Flow.- 6 Miscible Displacement.- 6.1 Introduction.- 6.2 Upscaling from the Micro-to the Mesoscale.- 6.3 Upscaling from the Meso-to the Macroscale.- 6.4 Discussion.- 7 Thermal Flow.-7.1 Introduction.- 7.2 Basic Equations.- 7.3 Natural Convection in a Bounded Domain.- 7.4 Natural Convection in a Horizontal Porous Layer.- 7.5 Mixed Convection in a Horizontal Porous Layer.- 7.6 Thermal Boundary Layer Approximation.- 7.7 Conclusion.- 8 Poroelastic Media.- 8.1 Acoustics of an Empty Porous Medium.- 8.2 A Priori Estimates for a Saturated Porous Medium.- 8.3 Local Description of a Saturated Porous Medium.- 8.4 Acoustics of a Fluid in a Rigid Porous Medium.- 8.5 Diphasic Macroscopic Behavior.- 8.6 Monophasic Elastic Macroscopic Behavior.- 8.7 Monophasic Viscoelastic Macroscopic Behavior.- 8.8 Acoustics of Double-Porosity Media.- 8.9 Conclusion.- 9 Microstructure Models of Porous Media.- 9.1 Introduction.- 9.2 Parallel Flow Models.- 9.3 Distributed Microstructure Models.- 9.4 A Variational Formulation.- 9.5 Remarks.- 10 Computational Aspects of Dual-Porosity Models.- 10.1 Single-Phase Flow.- 10.2 Two-Phase Flow.- 10.3 Some Computational Results.- A Mathematical Approaches and Methods.- A.1.1 F-Convergence.- A.1.2 G-Convergence.- A.1.3 H-Convergence.- A.2 The Energy Method.- A.2.1 Setting of a Model Problem.- A.2.2 Proof of the Results.- A.3 Two-Scale Convergence.- A.3.1 A Brief Presentation.- A.3.2 Statement of the Principal Results.- A.3.3 Application to a Model Problem.- A.4 Iterated Homogenization.- B Mathematical Symbols and Definitions.- B.1 List of Symbols.- B.2 Function Spaces.- B.2.1 Macroscopic Function Spaces.- B.2.2 Micro-and Mesoscopic Function Spaces.- B.2.3 Two-Scale Function Spaces.- B.2.4 Time-Dependent Function Spaces.- C References.
1 Introduction.- 1.1 Basic Idea.- 1.2 First Examples.- 1.3 Diffusion in Periodic Media.- 1.4 Formal Derivation of Darcy's Law.- 1.5 Formal Derivation of a Distributed Microstructure Model.- 1.6 Remarks on Networks of Resistors, Capillary Tubes, and Cracks.- 2 Percolation Models for Porous Media.- 2.1 Fundamentals of Percolation Theory.- 2.2 Exponent Inequalities for Random Flow and Resistor Networks.- 2.3 Critical Path Analysis in Highly Disordered Porous and Conducting Media.- 3 One-Phase Newtonian Flow.- 3.1 Derivation of Darcy's Law.- 3.2 Inertia Effects.- 3.3 Derivation of Brinkman's Law.- 3.4 Double Permeability.- 3.5 On the Transmission Conditions at the Contact Interface between a Porous Medium and a Free Fluid.- 4 Non-Newtonian Flow.- 4.1 Introduction.- 4.2 Equations Governing Creeping Flow of a Quasi-Newtonian Fluid.- 4.3 Description of a Periodic s-Geometry, Construction of the Restriction Operator, and Review of the Results of Two-Scale Convergence in Lq-Spaces.- 4.4 Statement of the Principal Results.- 4.5 Inertia Effects for Non-Newtonian Flows through Porous Media.- 4.6 Proof of the Uniqueness Theorems.- 4.7 Uniform A Priori Estimates.- 4.8 Proof of Theorem A.- 4.9 Proof of Theorem B.- 4.10 Conclusion.- 5 Two-Phase Flow.- 5.1 Derivation of the Generalized Nonlinear Darcy Law.- 5.2 Upscaling Two-Phase Flow Characteristics in a Heterogeneous Reservoir with Capillary Forces (Finite Peclet Number).- 5.3 Upscaling Two-Phase Flow Characteristics in a Heterogeneous Core, Neglecting Capillary Effects (Infinite Peclet Number).- 5.4 The Double-Porosity Model of Immiscible Two-Phase Flow.- 6 Miscible Displacement.- 6.1 Introduction.- 6.2 Upscaling from the Micro-to the Mesoscale.- 6.3 Upscaling from the Meso-to the Macroscale.- 6.4 Discussion.- 7 Thermal Flow.-7.1 Introduction.- 7.2 Basic Equations.- 7.3 Natural Convection in a Bounded Domain.- 7.4 Natural Convection in a Horizontal Porous Layer.- 7.5 Mixed Convection in a Horizontal Porous Layer.- 7.6 Thermal Boundary Layer Approximation.- 7.7 Conclusion.- 8 Poroelastic Media.- 8.1 Acoustics of an Empty Porous Medium.- 8.2 A Priori Estimates for a Saturated Porous Medium.- 8.3 Local Description of a Saturated Porous Medium.- 8.4 Acoustics of a Fluid in a Rigid Porous Medium.- 8.5 Diphasic Macroscopic Behavior.- 8.6 Monophasic Elastic Macroscopic Behavior.- 8.7 Monophasic Viscoelastic Macroscopic Behavior.- 8.8 Acoustics of Double-Porosity Media.- 8.9 Conclusion.- 9 Microstructure Models of Porous Media.- 9.1 Introduction.- 9.2 Parallel Flow Models.- 9.3 Distributed Microstructure Models.- 9.4 A Variational Formulation.- 9.5 Remarks.- 10 Computational Aspects of Dual-Porosity Models.- 10.1 Single-Phase Flow.- 10.2 Two-Phase Flow.- 10.3 Some Computational Results.- A Mathematical Approaches and Methods.- A.1.1 F-Convergence.- A.1.2 G-Convergence.- A.1.3 H-Convergence.- A.2 The Energy Method.- A.2.1 Setting of a Model Problem.- A.2.2 Proof of the Results.- A.3 Two-Scale Convergence.- A.3.1 A Brief Presentation.- A.3.2 Statement of the Principal Results.- A.3.3 Application to a Model Problem.- A.4 Iterated Homogenization.- B Mathematical Symbols and Definitions.- B.1 List of Symbols.- B.2 Function Spaces.- B.2.1 Macroscopic Function Spaces.- B.2.2 Micro-and Mesoscopic Function Spaces.- B.2.3 Two-Scale Function Spaces.- B.2.4 Time-Dependent Function Spaces.- C References.