97,95 €
97,95 €
inkl. MwSt.
Sofort per Download lieferbar
49 °P sammeln
97,95 €
Als Download kaufen
97,95 €
inkl. MwSt.
Sofort per Download lieferbar
49 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
97,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
49 °P sammeln
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Exploring the concept of homotopy from topology, different homotopy-based methods have been proposed for analytically solving nonlinear differential equations, given by approximate series solutions. Homotopy-Based Methods in Water Engineering attempts to present the applicability of these methods to water engineering problems.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 20.53MB
Andere Kunden interessierten sich auch für
- Manotosh KumbhakarHomotopy-Based Methods in Water Engineering (eBook, ePUB)97,95 €
- Subhash VermaWater and Wastewater Engineering Technology (eBook, PDF)97,95 €
- Frank R. SpellmanMathematics Manual for Water and Wastewater Treatment Plant Operators: Water Treatment Operations (eBook, PDF)97,95 €
- Frank R. SpellmanMathematics Manual for Water and Wastewater Treatment Plant Operators (eBook, PDF)97,95 €
- K. Ramesh ReddyBiogeochemistry of Wetlands (eBook, PDF)157,95 €
- C. A. J. AppeloGeochemistry, Groundwater and Pollution (eBook, PDF)62,95 €
- Glenn E. MoglenFundamentals of Open Channel Flow (eBook, PDF)65,95 €
-
-
-
Exploring the concept of homotopy from topology, different homotopy-based methods have been proposed for analytically solving nonlinear differential equations, given by approximate series solutions. Homotopy-Based Methods in Water Engineering attempts to present the applicability of these methods to water engineering problems.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 470
- Erscheinungstermin: 20. Juli 2023
- Englisch
- ISBN-13: 9781000893359
- Artikelnr.: 68157157
- Verlag: Taylor & Francis
- Seitenzahl: 470
- Erscheinungstermin: 20. Juli 2023
- Englisch
- ISBN-13: 9781000893359
- Artikelnr.: 68157157
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Manotosh Kumbhakar is a Postdoctoral Researcher at National Taiwan University, Tawan. Previously, he was a Postdoctoral Research Associate at Texas A&M University, USA, from 2020-2021. He specializes in entropy theory, mechanics of sediment transport, and semi-analytical methods. Dr. Manotosh has published several papers in reputed international journals.
Vijay P. Singh, Ph.D., D.Sc., D. Eng. (Hon.), Ph.D. (Hon..), P.E., P.H., Hon. D. WRE, Dist.M. ASCE, NAE, is a Distinguished Professor, a Regents Professor, and Caroline & William N. Lehrer Distinguished Chair in Water Engineering in Department of Biological and Agricultural Engineering and Zachry Department of Civil & Environmental Engineering at Texas A&M University. He specializes in surface-water hydrology, groundwater hydrology, hydraulics, irrigation engineering, environmental and water resources engineering, entropy theory, and copula theory. Professor Singh has published extensively and has received 110 national and international awards, including three honorary doctorates. He is a member of National Academy of Engineering, and a fellow or member of 12 international engineering/science academies.
Vijay P. Singh, Ph.D., D.Sc., D. Eng. (Hon.), Ph.D. (Hon..), P.E., P.H., Hon. D. WRE, Dist.M. ASCE, NAE, is a Distinguished Professor, a Regents Professor, and Caroline & William N. Lehrer Distinguished Chair in Water Engineering in Department of Biological and Agricultural Engineering and Zachry Department of Civil & Environmental Engineering at Texas A&M University. He specializes in surface-water hydrology, groundwater hydrology, hydraulics, irrigation engineering, environmental and water resources engineering, entropy theory, and copula theory. Professor Singh has published extensively and has received 110 national and international awards, including three honorary doctorates. He is a member of National Academy of Engineering, and a fellow or member of 12 international engineering/science academies.
Part One: Introduction. 1. Introduction. 2. Basic Concepts. Part Two:
Algebraic/Transcendental Equations. 3. Numerical Solution for Colebrook
Equation. Part Three: Ordinary Differential Equations (ODEs) (Single and
System). 4. Velocity Distribution in Smooth Uniform Open Channel Flow. 5.
Sediment Concentration Distribution in Open-Channel Flow. 6. Richards
Equation Under Gravity-Driven Infiltration and Constant Rainfall Intensity.
7. Error Equation for Unsteady Uniform Flow. 8. Spatially Varied Flow
Equations. 9. Modeling of Nonlinear Reservoir. 10. Nonlinear Muskingum
Method for Flood Routing. 11. Velocity and Sediment Concentration
Distribution in Open Channel Flow. Part Four: Partial Differential
Equations (PDES) (Single and System). 12. Unsteady Confined Radial
Ground-Water Flow Equation. 13. Series Solutions for Burger's Equations.
14. Diffusive Wave Flood Routing Problem with Lateral Inflow. 15. Kinematic
Wave Equation. 16. Multispecies Convection-Dispersion Transport Equation
with Variable Parameters. Part Five: Integro-Differential Equations. 17.
Absorption Equation in Unsaturated Soil.
Algebraic/Transcendental Equations. 3. Numerical Solution for Colebrook
Equation. Part Three: Ordinary Differential Equations (ODEs) (Single and
System). 4. Velocity Distribution in Smooth Uniform Open Channel Flow. 5.
Sediment Concentration Distribution in Open-Channel Flow. 6. Richards
Equation Under Gravity-Driven Infiltration and Constant Rainfall Intensity.
7. Error Equation for Unsteady Uniform Flow. 8. Spatially Varied Flow
Equations. 9. Modeling of Nonlinear Reservoir. 10. Nonlinear Muskingum
Method for Flood Routing. 11. Velocity and Sediment Concentration
Distribution in Open Channel Flow. Part Four: Partial Differential
Equations (PDES) (Single and System). 12. Unsteady Confined Radial
Ground-Water Flow Equation. 13. Series Solutions for Burger's Equations.
14. Diffusive Wave Flood Routing Problem with Lateral Inflow. 15. Kinematic
Wave Equation. 16. Multispecies Convection-Dispersion Transport Equation
with Variable Parameters. Part Five: Integro-Differential Equations. 17.
Absorption Equation in Unsaturated Soil.
Part One: Introduction. 1. Introduction. 2. Basic Concepts. Part Two:
Algebraic/Transcendental Equations. 3. Numerical Solution for Colebrook
Equation. Part Three: Ordinary Differential Equations (ODEs) (Single and
System). 4. Velocity Distribution in Smooth Uniform Open Channel Flow. 5.
Sediment Concentration Distribution in Open-Channel Flow. 6. Richards
Equation Under Gravity-Driven Infiltration and Constant Rainfall Intensity.
7. Error Equation for Unsteady Uniform Flow. 8. Spatially Varied Flow
Equations. 9. Modeling of Nonlinear Reservoir. 10. Nonlinear Muskingum
Method for Flood Routing. 11. Velocity and Sediment Concentration
Distribution in Open Channel Flow. Part Four: Partial Differential
Equations (PDES) (Single and System). 12. Unsteady Confined Radial
Ground-Water Flow Equation. 13. Series Solutions for Burger's Equations.
14. Diffusive Wave Flood Routing Problem with Lateral Inflow. 15. Kinematic
Wave Equation. 16. Multispecies Convection-Dispersion Transport Equation
with Variable Parameters. Part Five: Integro-Differential Equations. 17.
Absorption Equation in Unsaturated Soil.
Algebraic/Transcendental Equations. 3. Numerical Solution for Colebrook
Equation. Part Three: Ordinary Differential Equations (ODEs) (Single and
System). 4. Velocity Distribution in Smooth Uniform Open Channel Flow. 5.
Sediment Concentration Distribution in Open-Channel Flow. 6. Richards
Equation Under Gravity-Driven Infiltration and Constant Rainfall Intensity.
7. Error Equation for Unsteady Uniform Flow. 8. Spatially Varied Flow
Equations. 9. Modeling of Nonlinear Reservoir. 10. Nonlinear Muskingum
Method for Flood Routing. 11. Velocity and Sediment Concentration
Distribution in Open Channel Flow. Part Four: Partial Differential
Equations (PDES) (Single and System). 12. Unsteady Confined Radial
Ground-Water Flow Equation. 13. Series Solutions for Burger's Equations.
14. Diffusive Wave Flood Routing Problem with Lateral Inflow. 15. Kinematic
Wave Equation. 16. Multispecies Convection-Dispersion Transport Equation
with Variable Parameters. Part Five: Integro-Differential Equations. 17.
Absorption Equation in Unsaturated Soil.