Colin Adams, Abigail Thompson, Joel Hass
How to Ace the Rest of Calculus (eBook, ePUB)
The Streetwise Guide, Including MultiVariable Calculus
6,99 €
6,99 €
inkl. MwSt.
Sofort per Download lieferbar
3 °P sammeln
6,99 €
Als Download kaufen
6,99 €
inkl. MwSt.
Sofort per Download lieferbar
3 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
6,99 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
3 °P sammeln
Colin Adams, Abigail Thompson, Joel Hass
How to Ace the Rest of Calculus (eBook, ePUB)
The Streetwise Guide, Including MultiVariable Calculus
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
The sequel to How to Ace Calculus , How to Ace the Rest of Calculus provides humorous and highly readable explanations of the key topics of second and third semester calculus-such as sequences and series, polor coordinates, and multivariable calculus-without the technical details and fine print that would be found in a formal text.
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 10.32MB
The sequel to How to Ace Calculus, How to Ace the Rest of Calculus provides humorous and highly readable explanations of the key topics of second and third semester calculus-such as sequences and series, polor coordinates, and multivariable calculus-without the technical details and fine print that would be found in a formal text.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in D ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Henry Holt and Co.
- Seitenzahl: 304
- Erscheinungstermin: 20. Oktober 2015
- Englisch
- ISBN-13: 9781627798860
- Artikelnr.: 43968446
- Verlag: Henry Holt and Co.
- Seitenzahl: 304
- Erscheinungstermin: 20. Oktober 2015
- Englisch
- ISBN-13: 9781627798860
- Artikelnr.: 43968446
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Colin Adams, Abigail Thompson, and Joel Hass
Introduction
Indeterminate Forms and Improper Integrals
2.1 Indeterminate forms
2.2 Improper integrals
Polar Coordinates
3.1 Introduction to polar coordinates
3.2 Area in polar coordinates
Infinite Series
4.1 Sequences
4.2 Limits of sequences
4.3 Series: The basic idea
4.4 Geometric series: The extroverts
4.5 The nth-term test
4.6 Integral test and p-series: More friends
4.7 Comparison tests
4.8 Alternating series and absolute convergence
4.9 More tests for convergence
4.10 Power series
4.11 Which test to apply when?
4.12 Taylor series
4.13 Taylor's formula with remainder
4.14 Some famous Taylor series
Vectors: From Euclid to Cupid
5.1 Vectors in the plane
5.2 Space: The final (exam) frontier
5.3 Vectors in space
5.4 The dot product
5.5 The cross product
5.6 Lines in space
5.7 Planes in space
Parametric Curves in Space: Riding the Roller Coaster
6.1 Parametric curves
6.2 Curvature
6.3 Velocity and acceleration
Surfaces and Graphing
7.1 Curves in the plane: A retrospective
7.2 Graphs of equations in 3-D space
7.3 Surfaces of revolution
7.4 Quadric surfaces (the -oid surfaces)
Functions of Several Variables and Their Partial Derivatives
8.1 Functions of several variables
8.2 Contour curves
8.3 Limits
8.4 Continuity
8.5 Partial derivatives
8.6 Max-min problems
cf08.7 The chain rule
8.8 The gradient and directional derivatives
8.9 Lagrange multipliers
8.10 Second derivative test
Multiple Integrals
9.1 Double integrals and limits-the technical stuff
9.2 Calculating double integrals
9.3 Double integrals and volumes under a graph
9.4 Double integrals in polar coordinates
9.5 Triple integrals
9.6 Cylindrical and spherical coordinates
9.7 Mass, center of mass, and moments
9.8 Change of coordinates
Vector Fields and the Green-Stokes Gang
10.1 Vector fields
10.2 Getting acquainted with div and curl
10.3 Line up for line integrals
10.4 Line integrals of vector fields
10.5 Conservative vector fields
10.6 Green's theorem
10.7 Integrating the divergence; the divergence theorem
10.8 Surface integrals
10.9 Stoking!
What's Going to Be on the Final?
Glossary: A Quick Guide to the Mathematical Jargon
Index
Just the Facts: A Quick Reference Guide
Indeterminate Forms and Improper Integrals
2.1 Indeterminate forms
2.2 Improper integrals
Polar Coordinates
3.1 Introduction to polar coordinates
3.2 Area in polar coordinates
Infinite Series
4.1 Sequences
4.2 Limits of sequences
4.3 Series: The basic idea
4.4 Geometric series: The extroverts
4.5 The nth-term test
4.6 Integral test and p-series: More friends
4.7 Comparison tests
4.8 Alternating series and absolute convergence
4.9 More tests for convergence
4.10 Power series
4.11 Which test to apply when?
4.12 Taylor series
4.13 Taylor's formula with remainder
4.14 Some famous Taylor series
Vectors: From Euclid to Cupid
5.1 Vectors in the plane
5.2 Space: The final (exam) frontier
5.3 Vectors in space
5.4 The dot product
5.5 The cross product
5.6 Lines in space
5.7 Planes in space
Parametric Curves in Space: Riding the Roller Coaster
6.1 Parametric curves
6.2 Curvature
6.3 Velocity and acceleration
Surfaces and Graphing
7.1 Curves in the plane: A retrospective
7.2 Graphs of equations in 3-D space
7.3 Surfaces of revolution
7.4 Quadric surfaces (the -oid surfaces)
Functions of Several Variables and Their Partial Derivatives
8.1 Functions of several variables
8.2 Contour curves
8.3 Limits
8.4 Continuity
8.5 Partial derivatives
8.6 Max-min problems
cf08.7 The chain rule
8.8 The gradient and directional derivatives
8.9 Lagrange multipliers
8.10 Second derivative test
Multiple Integrals
9.1 Double integrals and limits-the technical stuff
9.2 Calculating double integrals
9.3 Double integrals and volumes under a graph
9.4 Double integrals in polar coordinates
9.5 Triple integrals
9.6 Cylindrical and spherical coordinates
9.7 Mass, center of mass, and moments
9.8 Change of coordinates
Vector Fields and the Green-Stokes Gang
10.1 Vector fields
10.2 Getting acquainted with div and curl
10.3 Line up for line integrals
10.4 Line integrals of vector fields
10.5 Conservative vector fields
10.6 Green's theorem
10.7 Integrating the divergence; the divergence theorem
10.8 Surface integrals
10.9 Stoking!
What's Going to Be on the Final?
Glossary: A Quick Guide to the Mathematical Jargon
Index
Just the Facts: A Quick Reference Guide
Introduction
Indeterminate Forms and Improper Integrals
2.1 Indeterminate forms
2.2 Improper integrals
Polar Coordinates
3.1 Introduction to polar coordinates
3.2 Area in polar coordinates
Infinite Series
4.1 Sequences
4.2 Limits of sequences
4.3 Series: The basic idea
4.4 Geometric series: The extroverts
4.5 The nth-term test
4.6 Integral test and p-series: More friends
4.7 Comparison tests
4.8 Alternating series and absolute convergence
4.9 More tests for convergence
4.10 Power series
4.11 Which test to apply when?
4.12 Taylor series
4.13 Taylor's formula with remainder
4.14 Some famous Taylor series
Vectors: From Euclid to Cupid
5.1 Vectors in the plane
5.2 Space: The final (exam) frontier
5.3 Vectors in space
5.4 The dot product
5.5 The cross product
5.6 Lines in space
5.7 Planes in space
Parametric Curves in Space: Riding the Roller Coaster
6.1 Parametric curves
6.2 Curvature
6.3 Velocity and acceleration
Surfaces and Graphing
7.1 Curves in the plane: A retrospective
7.2 Graphs of equations in 3-D space
7.3 Surfaces of revolution
7.4 Quadric surfaces (the -oid surfaces)
Functions of Several Variables and Their Partial Derivatives
8.1 Functions of several variables
8.2 Contour curves
8.3 Limits
8.4 Continuity
8.5 Partial derivatives
8.6 Max-min problems
cf08.7 The chain rule
8.8 The gradient and directional derivatives
8.9 Lagrange multipliers
8.10 Second derivative test
Multiple Integrals
9.1 Double integrals and limits-the technical stuff
9.2 Calculating double integrals
9.3 Double integrals and volumes under a graph
9.4 Double integrals in polar coordinates
9.5 Triple integrals
9.6 Cylindrical and spherical coordinates
9.7 Mass, center of mass, and moments
9.8 Change of coordinates
Vector Fields and the Green-Stokes Gang
10.1 Vector fields
10.2 Getting acquainted with div and curl
10.3 Line up for line integrals
10.4 Line integrals of vector fields
10.5 Conservative vector fields
10.6 Green's theorem
10.7 Integrating the divergence; the divergence theorem
10.8 Surface integrals
10.9 Stoking!
What's Going to Be on the Final?
Glossary: A Quick Guide to the Mathematical Jargon
Index
Just the Facts: A Quick Reference Guide
Indeterminate Forms and Improper Integrals
2.1 Indeterminate forms
2.2 Improper integrals
Polar Coordinates
3.1 Introduction to polar coordinates
3.2 Area in polar coordinates
Infinite Series
4.1 Sequences
4.2 Limits of sequences
4.3 Series: The basic idea
4.4 Geometric series: The extroverts
4.5 The nth-term test
4.6 Integral test and p-series: More friends
4.7 Comparison tests
4.8 Alternating series and absolute convergence
4.9 More tests for convergence
4.10 Power series
4.11 Which test to apply when?
4.12 Taylor series
4.13 Taylor's formula with remainder
4.14 Some famous Taylor series
Vectors: From Euclid to Cupid
5.1 Vectors in the plane
5.2 Space: The final (exam) frontier
5.3 Vectors in space
5.4 The dot product
5.5 The cross product
5.6 Lines in space
5.7 Planes in space
Parametric Curves in Space: Riding the Roller Coaster
6.1 Parametric curves
6.2 Curvature
6.3 Velocity and acceleration
Surfaces and Graphing
7.1 Curves in the plane: A retrospective
7.2 Graphs of equations in 3-D space
7.3 Surfaces of revolution
7.4 Quadric surfaces (the -oid surfaces)
Functions of Several Variables and Their Partial Derivatives
8.1 Functions of several variables
8.2 Contour curves
8.3 Limits
8.4 Continuity
8.5 Partial derivatives
8.6 Max-min problems
cf08.7 The chain rule
8.8 The gradient and directional derivatives
8.9 Lagrange multipliers
8.10 Second derivative test
Multiple Integrals
9.1 Double integrals and limits-the technical stuff
9.2 Calculating double integrals
9.3 Double integrals and volumes under a graph
9.4 Double integrals in polar coordinates
9.5 Triple integrals
9.6 Cylindrical and spherical coordinates
9.7 Mass, center of mass, and moments
9.8 Change of coordinates
Vector Fields and the Green-Stokes Gang
10.1 Vector fields
10.2 Getting acquainted with div and curl
10.3 Line up for line integrals
10.4 Line integrals of vector fields
10.5 Conservative vector fields
10.6 Green's theorem
10.7 Integrating the divergence; the divergence theorem
10.8 Surface integrals
10.9 Stoking!
What's Going to Be on the Final?
Glossary: A Quick Guide to the Mathematical Jargon
Index
Just the Facts: A Quick Reference Guide