121,95 €
121,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
61 °P sammeln
121,95 €
121,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
61 °P sammeln
Als Download kaufen
121,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
61 °P sammeln
Jetzt verschenken
121,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
61 °P sammeln
  • Format: PDF

Protein homeostasis, or "Proteostasis", lies at the heart of human health and disease. From the folding of single polypeptide chains into functional proteins, to the regulation of intracellular signaling pathways, to the secreted signals that coordinate cells in tissues and throughout the body, the proteostasis network operates to support cell health and physiological fitness. However, cancer cells also hijack the proteostasis network and many of these same processes to sustain the growth and spread of tumors.
The chapters in this book are written by world experts in the many facets of the
…mehr

Produktbeschreibung
Protein homeostasis, or "Proteostasis", lies at the heart of human health and disease. From the folding of single polypeptide chains into functional proteins, to the regulation of intracellular signaling pathways, to the secreted signals that coordinate cells in tissues and throughout the body, the proteostasis network operates to support cell health and physiological fitness. However, cancer cells also hijack the proteostasis network and many of these same processes to sustain the growth and spread of tumors.

The chapters in this book are written by world experts in the many facets of the proteostasis network. They describe cutting-edge insights into the structure and function of the major chaperone and degradation systems in healthy cells and how these systems are co-opted in cancer cells and the cells of the tumor microenvironment. The chapters also cover therapeutic interventions such as the FDA-approved proteasome inhibitors Velcade and Krypolis as well as other therapies currently under clinical investigation to disarm the ability of the proteostasis network to support malignancy. This compendium is the first of its kind and aims to serve as a reference manual for active investigators and a primer for newcomers to the field.

This book is dedicated to the memory of Susan Lindquist, a pioneer of the proteostasis field and a champion of the power of basic scientific inquiry to unlock the mechanisms of human disease.

The chapter "Reflections and Outlook on Targeting HSP90, HSP70 and HSF1 in Cancer: A Personal Perspective" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Dr. Ruth Scherz-Shouval is the daughter of Prof. Avigdor Scherz, a pioneer in the field of photo-dynamic therapy in the Department of Plant and Environmental Sciences at the Weizmann Institute. She earned a BSc in the life sciences with honors at the Hebrew University of Jerusalem in 2002 and a PhD in biological chemistry at the Weizmann Institute of Science in 2008 (with Prof. Zvulun Elazar). She conducted postdoctoral research in Prof. Moshe Oren's laboratory at the Weizmann Institute and at the Whitehead Institute for Biomedical Research at the Massachusetts Institute of Technology (MIT), and will join the Weizmann Institute's Department of Biological Chemistry in October 2015.

Dr. Marc Mendillo is an Assistant Professor of Biochemistry and Molecular Genetics at the Northwestern University. His PhD was obtained from the University Of California-San Diego in Biomedical Sciences followed by a Postdoctoral Fellowship at the Ludwig Institute for Cancer Research in San Diego and another at the Whitehead Institute. Currently, he runs a lab in the Department of Biochemistry and Molecular Genetics and the Robert H. Lurie Comprehensive Cancer Center.

Dr. David Pincus is a fellow at the Whitehead Institute where he tries to reveal the underlying mechanisms cells employ to maintain homeostasis in inherently fluctuating environments.