Human Activity Recognition and Anomaly Detection (eBook, PDF)
4th International Workshop, DL-HAR 2024, and First International Workshop, ADFM 2024, Held in Conjunction with IJCAI 2024, Jeju, South Korea, August 3-9, 2024, Revised Selected Papers Redaktion: Peng, Kuan-Chuan; Wu, Min; Suh, Sungho; Yang, Jianfei; Chen, Zhenghua; Li, Ziyue; Wang, Yizhou
Human Activity Recognition and Anomaly Detection (eBook, PDF)
4th International Workshop, DL-HAR 2024, and First International Workshop, ADFM 2024, Held in Conjunction with IJCAI 2024, Jeju, South Korea, August 3-9, 2024, Revised Selected Papers Redaktion: Peng, Kuan-Chuan; Wu, Min; Suh, Sungho; Yang, Jianfei; Chen, Zhenghua; Li, Ziyue; Wang, Yizhou
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book constitutes the refereed proceedings of the 4th International and First International Workshop on Human Activity Recognition and Anomaly Detection, Conjunction with IJCAI 2024, held in Jeju, South Korea, during August 3-9, 2024. The 9 full papers included in this book were carefully reviewed and selected from 14 submissions. They were organized in topical sections as follows: Anomaly Detection with Foundation Models and Deep Learning for Human Activity Recognition.
This book constitutes the refereed proceedings of the 4th International and First International Workshop on Human Activity Recognition and Anomaly Detection, Conjunction with IJCAI 2024, held in Jeju, South Korea, during August 3-9, 2024.
The 9 full papers included in this book were carefully reviewed and selected from 14 submissions. They were organized in topical sections as follows: Anomaly Detection with Foundation Models and Deep Learning for Human Activity Recognition.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Die Herstellerinformationen sind derzeit nicht verfügbar.
Inhaltsangabe
.- Anomaly Detection with Foundation Models. .- GPT-4V-AD: Exploring Grounding Potential of VQA-oriented GPT-4V for Zero-shot Anomaly Detection. .- CLIP-AD: A Language-Guided Staged Dual-Path Model for Zero-shot Anomaly Detection. .- DDPM-MoCo: Advancing Industrial Surface Defect Generation and Detection with Generative and Contrastive Learning. .- Dual Memory-guided Probabilistic Model for Weakly-supervised Anomaly Detection. .- Deep Learning for Human Activity Recognition. .- Real-Time Human Action Prediction via Pose Kinematics. .- Uncertainty Awareness for Unsupervised Domain Adaptation on Human Activity Recognition. .- Deep Interaction Feature Fusion for Robust Human Activity Recognition. .- How effective are Self-Supervised models for Contact Identification in Videos. .- A Wearable Multi-Modal Edge-Computing System for Real-Time Kitchen Activity Recognition.
.- Anomaly Detection with Foundation Models. .- GPT-4V-AD: Exploring Grounding Potential of VQA-oriented GPT-4V for Zero-shot Anomaly Detection. .- CLIP-AD: A Language-Guided Staged Dual-Path Model for Zero-shot Anomaly Detection. .- DDPM-MoCo: Advancing Industrial Surface Defect Generation and Detection with Generative and Contrastive Learning. .- Dual Memory-guided Probabilistic Model for Weakly-supervised Anomaly Detection. .- Deep Learning for Human Activity Recognition. .- Real-Time Human Action Prediction via Pose Kinematics. .- Uncertainty Awareness for Unsupervised Domain Adaptation on Human Activity Recognition. .- Deep Interaction Feature Fusion for Robust Human Activity Recognition. .- How effective are Self-Supervised models for Contact Identification in Videos. .- A Wearable Multi-Modal Edge-Computing System for Real-Time Kitchen Activity Recognition.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826