Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book is written for researchers and postgraduates who are interested in developing high-accurate energy demand forecasting models that outperform traditional models by hybridizing intelligent technologies. It covers meta-heuristic algorithms, chaotic mapping mechanism, quantum computing mechanism, recurrent mechanisms, phase space reconstruction, and recurrence plot theory. The book clearly illustrates how these intelligent technologies could be hybridized with those traditional forecasting models. This book provides many figures to deonstrate how these hybrid intelligent…mehr
This book is written for researchers and postgraduates who are interested in developing high-accurate energy demand forecasting models that outperform traditional models by hybridizing intelligent technologies.
It covers meta-heuristic algorithms, chaotic mapping mechanism, quantum computing mechanism, recurrent mechanisms, phase space reconstruction, and recurrence plot theory.
The book clearly illustrates how these intelligent technologies could be hybridized with those traditional forecasting models. This book provides many figures to deonstrate how these hybrid intelligent technologies are being applied to exceed the limitations of existing models.
Wei-Chiang Hong is a professor in the Department of Information Management at the Oriental Institute of Technology, Taiwan. His research interests are focused on hybridized meta-heuristic algorithms (the genetic algorithm, simulated annealing algorithm, immune algorithm, particle swarm optimization algorithm, ant colony / artificial bee colony optimization algorithm, cuckoo search algorithm, bat algorithm, dragonfly algorithm, etc.) together with the chaotic mapping mechanism, quantum computing mechanism, recurrent neural networks, seasonal mechanism, phase space reconstruction, and recurrence plot theory in the support vector regression (SVR) model, the goal being to provide more accurate forecasting performance by determining the suitable parameters of an SVR model. In this regard, the author has gathered substantial practical experience using hybrid meta-heuristic algorithms with intelligent technologies to improve forecasting accuracy.
Inhaltsangabe
Introduction.- Modeling for Energy Demand Forecasting.- Data Pre-processing Methods.- Hybridizing Meta-heuristic Algorithms with CMM and QCM for SVR’s Parameters Determination.- Hybridizing QCM with Dragonfly algorithm to Enrich the Solution Searching Be-haviors.- Phase Space Reconstruction and Recurrence Plot Theory
Introduction.- Modeling for Energy Demand Forecasting.- Data Pre-processing Methods.- Hybridizing Meta-heuristic Algorithms with CMM and QCM for SVR's Parameters Determination.- Hybridizing QCM with Dragonfly algorithm to Enrich the Solution Searching Be-haviors.- Phase Space Reconstruction and Recurrence Plot Theory
Introduction.- Modeling for Energy Demand Forecasting.- Data Pre-processing Methods.- Hybridizing Meta-heuristic Algorithms with CMM and QCM for SVR’s Parameters Determination.- Hybridizing QCM with Dragonfly algorithm to Enrich the Solution Searching Be-haviors.- Phase Space Reconstruction and Recurrence Plot Theory
Introduction.- Modeling for Energy Demand Forecasting.- Data Pre-processing Methods.- Hybridizing Meta-heuristic Algorithms with CMM and QCM for SVR's Parameters Determination.- Hybridizing QCM with Dragonfly algorithm to Enrich the Solution Searching Be-haviors.- Phase Space Reconstruction and Recurrence Plot Theory
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497