Hybrid Micromachining and Microfabrication Technologies (eBook, PDF)
Principles, Varieties and Applications
Redaktion: Kunar, Sandip; Perveen, Asma; Chatterjee, Prasenjit; Kibria, Golam
150,99 €
150,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
150,99 €
Als Download kaufen
150,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
150,99 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
0 °P sammeln
Hybrid Micromachining and Microfabrication Technologies (eBook, PDF)
Principles, Varieties and Applications
Redaktion: Kunar, Sandip; Perveen, Asma; Chatterjee, Prasenjit; Kibria, Golam
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 30.7MB
Andere Kunden interessierten sich auch für
- Hybrid Micromachining and Microfabrication Technologies (eBook, ePUB)150,99 €
- Kun ZhouMetal Powder-Based Additive Manufacturing (eBook, PDF)133,99 €
- Additive Manufacturing Technology (eBook, PDF)142,99 €
- Machining Composites Materials (eBook, PDF)139,99 €
- Modern Manufacturing Processes (eBook, PDF)170,99 €
- Additive Manufacturing of Metal Alloys 1 (eBook, PDF)126,99 €
- Micro-Manufacturing (eBook, PDF)123,99 €
-
-
-
Produktdetails
- Verlag: Wiley
- Seitenzahl: 336
- Erscheinungstermin: 21. April 2023
- Englisch
- ISBN-13: 9781394174942
- Artikelnr.: 68435555
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Audience Mechanical, production, manufacturing, and automation industry engineers as well as researchers and (post) graduate students in the same disciplines. Sandip Kunar, PhD, is an assistant professor in the Department of Mechanical Engineering, Aditya Engineering College, India. His research interests include non-conventional machining processes, micromachining processes, advanced manufacturing technology, and industrial engineering. He has published more than 50 research papers in various international journals and conferences as well as two patents. Golam Kibria, PhD, is an assistant professor in the Department of Mechanical Engineering at Aliah University, Kolkata, India. He has worked as Senior Research Fellow (SRF) in the Council of Scientific & Industrial Research (CSIR) and his research interests include non-conventional machining processes, micromachining, and advanced manufacturing and forming technology. Prasenjit Chatterjee, PhD, is a full professor of Mechanical Engineering and Dean (Research and Consultancy) at MCKV Institute of Engineering, West Bengal, India. He has more than 120 research papers in various international journals and peer-reviewed conferences. He has authored and edited over 22 books on intelligent decision-making, fuzzy computing, supply chain management, optimization techniques, risk management, and sustainability modeling. Dr. Chatterjee is one of the developers of a new multiple-criteria decision-making method called Measurement of Alternatives and Ranking according to Compromise Solution (MARCOS). Asma Perveen, PhD, is an assistant professor in the Mechanical & Aerospace Engineering Department at Nazarbayev University, Kazakhstan. She earned her PhD from the National University of Singapore and worked as a research scientist at the Singapore Institute of Manufacturing Technology for over two years. Her research interests are in EDM, hybrid machining processes, additive manufacturing, polymer extrusion, and non-conventional machining processes.
Preface xv
Acknowledgement xix
1 Overview of Hybrid Micromachining and Microfabrication Techniques 1
Sandip Kunar, Akhilesh Kumar Singh, Devarapalli Raviteja, Golam Kibria, Prasenjit Chatterjee, Asma Perveen and Norfazillah Talib
1.1 Introduction 2
1.2 Classification of Hybrid Micromachining and Microfabrication Techniques 3
1.2.1 Compound Processes 4
1.2.2 Methods Aided by Various Energy Sources 6
1.2.3 Processing Using a Hybrid Tool 9
1.3 Challenges in Hybrid Micromachining 9
1.4 Conclusions 10
1.5 Future Research Opportunities 11
References 11
2 A Review on Experimental Studies in Electrochemical Discharge Machining 17
Pravin Pawar, Amaresh Kumar and Raj Ballav
2.1 Introduction 17
2.2 Historical Background 18
2.3 Principle of Electrochemical Discharge Machining Process 20
2.4 Basic Mechanism of Electrochemical Discharge Machining Process 20
2.5 Application of ECDM Process 23
2.6 Literature Review on ECDM 23
2.6.1 Literature Review on Theoretical Modeling 23
2.6.2 Literature Review on Internal Behavioral Studies 27
2.6.3 Literature Review on Design of ECDM 30
2.6.4 Literature Review on Workpiece Materials Used in ECDM 33
2.6.5 Literature Review on Tooling Materials and Its Design in ECDM 36
2.6.6 Literature Review on Electrolyte Chemicals Used in ECDM 39
2.6.7 Literature Review on Optimization Techniques Used in ECDM 42
2.7 Conclusion 87
Acknowledgments 87
References 87
3 Laser-Assisted Micromilling 101
Asma Perveen, Sandip Kunar, Golam Kibria and Prasenjit Chatterjee
3.1 Introduction 102
3.2 Laser-Assisted Micromilling 103
3.2.1 Laser-Assisted Micromilling of Steel Alloys 103
3.2.2 Laser-Assisted Micromilling of Titanium Alloys 105
3.2.3 Laser-Assisted Micromilling of Ni Alloys 108
3.2.4 Laser-Assisted Micromilling of Cementite Carbide 109
3.2.5 Laser-Assisted Micromilling of Ceramics 110
3.3 Conclusion 111
References 112
4 Ultrasonic-Assisted Electrochemical Micromachining 115
Sandip Kunar, Itha Veeranjaneyulu, S. Rama Sree, Asma Perveen, Norfazillah Talib, Sreenivasa Reddy Medapati and K.V.S.R. Murthy
4.1 Introduction 116
4.2 Ultrasonic Effect 117
4.2.1 Pumping Effect 117
4.2.2 Cavitation Effect 117
4.3 Experimental Procedure 117
4.4 Results and Discussion 118
4.4.1 Effect of Traditional Electrochemical Micromachining 118
4.4.2 Effect of Electrolyte Jet During Micropatterning 119
4.4.3 Effect of Ultrasonic Assistance During Micropatterning 121
4.4.4 Effect of Ultrasonic Amplitude During Micropatterning 121
4.4.5 Influence of Working Voltage During Micropatterning 121
4.4.6 Influence of Pulse-Off Time During Micropatterning 121
4.4.7 Influence of Electrode Feed Rate During Micropatterning 122
4.5 Conclusions 122
References 123
5 Micro-Electrochemical Piercing on SS 204 125
Manas Barman, Premangshu Mukhopadhyay and Goutam Kumar Bose
5.1 Introduction 125
5.2 Experimentation on SS 204 Plates With Cu Tool Electrodes 126
5.3 Results and Discussions 127
5.4 Conclusions 134
References 134
6 Laser-Assisted Electrochemical Discharge Micromachining 137
Sandip Kunar, Kagithapu Rajendra, V. V. D. Praveen Kalepu, Prasenjit Chatterjee, Asma Perveen, Norfazillah Talib and K.V.S.R. Murthy
6.1 Introduction 138
6.2 Expe
Acknowledgement xix
1 Overview of Hybrid Micromachining and Microfabrication Techniques 1
Sandip Kunar, Akhilesh Kumar Singh, Devarapalli Raviteja, Golam Kibria, Prasenjit Chatterjee, Asma Perveen and Norfazillah Talib
1.1 Introduction 2
1.2 Classification of Hybrid Micromachining and Microfabrication Techniques 3
1.2.1 Compound Processes 4
1.2.2 Methods Aided by Various Energy Sources 6
1.2.3 Processing Using a Hybrid Tool 9
1.3 Challenges in Hybrid Micromachining 9
1.4 Conclusions 10
1.5 Future Research Opportunities 11
References 11
2 A Review on Experimental Studies in Electrochemical Discharge Machining 17
Pravin Pawar, Amaresh Kumar and Raj Ballav
2.1 Introduction 17
2.2 Historical Background 18
2.3 Principle of Electrochemical Discharge Machining Process 20
2.4 Basic Mechanism of Electrochemical Discharge Machining Process 20
2.5 Application of ECDM Process 23
2.6 Literature Review on ECDM 23
2.6.1 Literature Review on Theoretical Modeling 23
2.6.2 Literature Review on Internal Behavioral Studies 27
2.6.3 Literature Review on Design of ECDM 30
2.6.4 Literature Review on Workpiece Materials Used in ECDM 33
2.6.5 Literature Review on Tooling Materials and Its Design in ECDM 36
2.6.6 Literature Review on Electrolyte Chemicals Used in ECDM 39
2.6.7 Literature Review on Optimization Techniques Used in ECDM 42
2.7 Conclusion 87
Acknowledgments 87
References 87
3 Laser-Assisted Micromilling 101
Asma Perveen, Sandip Kunar, Golam Kibria and Prasenjit Chatterjee
3.1 Introduction 102
3.2 Laser-Assisted Micromilling 103
3.2.1 Laser-Assisted Micromilling of Steel Alloys 103
3.2.2 Laser-Assisted Micromilling of Titanium Alloys 105
3.2.3 Laser-Assisted Micromilling of Ni Alloys 108
3.2.4 Laser-Assisted Micromilling of Cementite Carbide 109
3.2.5 Laser-Assisted Micromilling of Ceramics 110
3.3 Conclusion 111
References 112
4 Ultrasonic-Assisted Electrochemical Micromachining 115
Sandip Kunar, Itha Veeranjaneyulu, S. Rama Sree, Asma Perveen, Norfazillah Talib, Sreenivasa Reddy Medapati and K.V.S.R. Murthy
4.1 Introduction 116
4.2 Ultrasonic Effect 117
4.2.1 Pumping Effect 117
4.2.2 Cavitation Effect 117
4.3 Experimental Procedure 117
4.4 Results and Discussion 118
4.4.1 Effect of Traditional Electrochemical Micromachining 118
4.4.2 Effect of Electrolyte Jet During Micropatterning 119
4.4.3 Effect of Ultrasonic Assistance During Micropatterning 121
4.4.4 Effect of Ultrasonic Amplitude During Micropatterning 121
4.4.5 Influence of Working Voltage During Micropatterning 121
4.4.6 Influence of Pulse-Off Time During Micropatterning 121
4.4.7 Influence of Electrode Feed Rate During Micropatterning 122
4.5 Conclusions 122
References 123
5 Micro-Electrochemical Piercing on SS 204 125
Manas Barman, Premangshu Mukhopadhyay and Goutam Kumar Bose
5.1 Introduction 125
5.2 Experimentation on SS 204 Plates With Cu Tool Electrodes 126
5.3 Results and Discussions 127
5.4 Conclusions 134
References 134
6 Laser-Assisted Electrochemical Discharge Micromachining 137
Sandip Kunar, Kagithapu Rajendra, V. V. D. Praveen Kalepu, Prasenjit Chatterjee, Asma Perveen, Norfazillah Talib and K.V.S.R. Murthy
6.1 Introduction 138
6.2 Expe
Preface xv
Acknowledgement xix
1 Overview of Hybrid Micromachining and Microfabrication Techniques 1
Sandip Kunar, Akhilesh Kumar Singh, Devarapalli Raviteja, Golam Kibria, Prasenjit Chatterjee, Asma Perveen and Norfazillah Talib
1.1 Introduction 2
1.2 Classification of Hybrid Micromachining and Microfabrication Techniques 3
1.2.1 Compound Processes 4
1.2.2 Methods Aided by Various Energy Sources 6
1.2.3 Processing Using a Hybrid Tool 9
1.3 Challenges in Hybrid Micromachining 9
1.4 Conclusions 10
1.5 Future Research Opportunities 11
References 11
2 A Review on Experimental Studies in Electrochemical Discharge Machining 17
Pravin Pawar, Amaresh Kumar and Raj Ballav
2.1 Introduction 17
2.2 Historical Background 18
2.3 Principle of Electrochemical Discharge Machining Process 20
2.4 Basic Mechanism of Electrochemical Discharge Machining Process 20
2.5 Application of ECDM Process 23
2.6 Literature Review on ECDM 23
2.6.1 Literature Review on Theoretical Modeling 23
2.6.2 Literature Review on Internal Behavioral Studies 27
2.6.3 Literature Review on Design of ECDM 30
2.6.4 Literature Review on Workpiece Materials Used in ECDM 33
2.6.5 Literature Review on Tooling Materials and Its Design in ECDM 36
2.6.6 Literature Review on Electrolyte Chemicals Used in ECDM 39
2.6.7 Literature Review on Optimization Techniques Used in ECDM 42
2.7 Conclusion 87
Acknowledgments 87
References 87
3 Laser-Assisted Micromilling 101
Asma Perveen, Sandip Kunar, Golam Kibria and Prasenjit Chatterjee
3.1 Introduction 102
3.2 Laser-Assisted Micromilling 103
3.2.1 Laser-Assisted Micromilling of Steel Alloys 103
3.2.2 Laser-Assisted Micromilling of Titanium Alloys 105
3.2.3 Laser-Assisted Micromilling of Ni Alloys 108
3.2.4 Laser-Assisted Micromilling of Cementite Carbide 109
3.2.5 Laser-Assisted Micromilling of Ceramics 110
3.3 Conclusion 111
References 112
4 Ultrasonic-Assisted Electrochemical Micromachining 115
Sandip Kunar, Itha Veeranjaneyulu, S. Rama Sree, Asma Perveen, Norfazillah Talib, Sreenivasa Reddy Medapati and K.V.S.R. Murthy
4.1 Introduction 116
4.2 Ultrasonic Effect 117
4.2.1 Pumping Effect 117
4.2.2 Cavitation Effect 117
4.3 Experimental Procedure 117
4.4 Results and Discussion 118
4.4.1 Effect of Traditional Electrochemical Micromachining 118
4.4.2 Effect of Electrolyte Jet During Micropatterning 119
4.4.3 Effect of Ultrasonic Assistance During Micropatterning 121
4.4.4 Effect of Ultrasonic Amplitude During Micropatterning 121
4.4.5 Influence of Working Voltage During Micropatterning 121
4.4.6 Influence of Pulse-Off Time During Micropatterning 121
4.4.7 Influence of Electrode Feed Rate During Micropatterning 122
4.5 Conclusions 122
References 123
5 Micro-Electrochemical Piercing on SS 204 125
Manas Barman, Premangshu Mukhopadhyay and Goutam Kumar Bose
5.1 Introduction 125
5.2 Experimentation on SS 204 Plates With Cu Tool Electrodes 126
5.3 Results and Discussions 127
5.4 Conclusions 134
References 134
6 Laser-Assisted Electrochemical Discharge Micromachining 137
Sandip Kunar, Kagithapu Rajendra, V. V. D. Praveen Kalepu, Prasenjit Chatterjee, Asma Perveen, Norfazillah Talib and K.V.S.R. Murthy
6.1 Introduction 138
6.2 Expe
Acknowledgement xix
1 Overview of Hybrid Micromachining and Microfabrication Techniques 1
Sandip Kunar, Akhilesh Kumar Singh, Devarapalli Raviteja, Golam Kibria, Prasenjit Chatterjee, Asma Perveen and Norfazillah Talib
1.1 Introduction 2
1.2 Classification of Hybrid Micromachining and Microfabrication Techniques 3
1.2.1 Compound Processes 4
1.2.2 Methods Aided by Various Energy Sources 6
1.2.3 Processing Using a Hybrid Tool 9
1.3 Challenges in Hybrid Micromachining 9
1.4 Conclusions 10
1.5 Future Research Opportunities 11
References 11
2 A Review on Experimental Studies in Electrochemical Discharge Machining 17
Pravin Pawar, Amaresh Kumar and Raj Ballav
2.1 Introduction 17
2.2 Historical Background 18
2.3 Principle of Electrochemical Discharge Machining Process 20
2.4 Basic Mechanism of Electrochemical Discharge Machining Process 20
2.5 Application of ECDM Process 23
2.6 Literature Review on ECDM 23
2.6.1 Literature Review on Theoretical Modeling 23
2.6.2 Literature Review on Internal Behavioral Studies 27
2.6.3 Literature Review on Design of ECDM 30
2.6.4 Literature Review on Workpiece Materials Used in ECDM 33
2.6.5 Literature Review on Tooling Materials and Its Design in ECDM 36
2.6.6 Literature Review on Electrolyte Chemicals Used in ECDM 39
2.6.7 Literature Review on Optimization Techniques Used in ECDM 42
2.7 Conclusion 87
Acknowledgments 87
References 87
3 Laser-Assisted Micromilling 101
Asma Perveen, Sandip Kunar, Golam Kibria and Prasenjit Chatterjee
3.1 Introduction 102
3.2 Laser-Assisted Micromilling 103
3.2.1 Laser-Assisted Micromilling of Steel Alloys 103
3.2.2 Laser-Assisted Micromilling of Titanium Alloys 105
3.2.3 Laser-Assisted Micromilling of Ni Alloys 108
3.2.4 Laser-Assisted Micromilling of Cementite Carbide 109
3.2.5 Laser-Assisted Micromilling of Ceramics 110
3.3 Conclusion 111
References 112
4 Ultrasonic-Assisted Electrochemical Micromachining 115
Sandip Kunar, Itha Veeranjaneyulu, S. Rama Sree, Asma Perveen, Norfazillah Talib, Sreenivasa Reddy Medapati and K.V.S.R. Murthy
4.1 Introduction 116
4.2 Ultrasonic Effect 117
4.2.1 Pumping Effect 117
4.2.2 Cavitation Effect 117
4.3 Experimental Procedure 117
4.4 Results and Discussion 118
4.4.1 Effect of Traditional Electrochemical Micromachining 118
4.4.2 Effect of Electrolyte Jet During Micropatterning 119
4.4.3 Effect of Ultrasonic Assistance During Micropatterning 121
4.4.4 Effect of Ultrasonic Amplitude During Micropatterning 121
4.4.5 Influence of Working Voltage During Micropatterning 121
4.4.6 Influence of Pulse-Off Time During Micropatterning 121
4.4.7 Influence of Electrode Feed Rate During Micropatterning 122
4.5 Conclusions 122
References 123
5 Micro-Electrochemical Piercing on SS 204 125
Manas Barman, Premangshu Mukhopadhyay and Goutam Kumar Bose
5.1 Introduction 125
5.2 Experimentation on SS 204 Plates With Cu Tool Electrodes 126
5.3 Results and Discussions 127
5.4 Conclusions 134
References 134
6 Laser-Assisted Electrochemical Discharge Micromachining 137
Sandip Kunar, Kagithapu Rajendra, V. V. D. Praveen Kalepu, Prasenjit Chatterjee, Asma Perveen, Norfazillah Talib and K.V.S.R. Murthy
6.1 Introduction 138
6.2 Expe