Michal Kornacki, Paulina Pietrzak
Hybrid Workflows in Translation (eBook, ePUB)
Integrating GenAI into Translator Training
21,95 €
21,95 €
inkl. MwSt.
Sofort per Download lieferbar
11 °P sammeln
21,95 €
Als Download kaufen
21,95 €
inkl. MwSt.
Sofort per Download lieferbar
11 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
21,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
11 °P sammeln
Michal Kornacki, Paulina Pietrzak
Hybrid Workflows in Translation (eBook, ePUB)
Integrating GenAI into Translator Training
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This concise volume serves as a valuable resource on understanding the integration and impact of generative AI (GenAI) and evolving technologies on translation workflows.
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
- Größe: 2.26MB
Andere Kunden interessierten sich auch für
- Michal KornackiHybrid Workflows in Translation (eBook, PDF)21,95 €
- Kelly WashbourneTranslators on Translation (eBook, ePUB)39,95 €
- Douglas RobinsonLessons Experimental Translators Can Learn from Finnegans Wake (eBook, ePUB)21,95 €
- Mustapha TaibiTranslation and Community (eBook, ePUB)37,95 €
- Fabio AlvesTranslation as a Cognitive Activity (eBook, ePUB)39,95 €
- Lynne BowkerDe-mystifying Translation (eBook, ePUB)0,99 €
- The Routledge Handbook of Translation, Feminism and Gender (eBook, ePUB)47,95 €
-
-
-
This concise volume serves as a valuable resource on understanding the integration and impact of generative AI (GenAI) and evolving technologies on translation workflows.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Erscheinungstermin: 9. September 2024
- Englisch
- ISBN-13: 9781040154618
- Artikelnr.: 72283620
- Verlag: Taylor & Francis
- Erscheinungstermin: 9. September 2024
- Englisch
- ISBN-13: 9781040154618
- Artikelnr.: 72283620
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Michal Kornacki is Assistant Professor at the Institute of English Studies at the University of Lódz, Poland.
Paulina Pietrzak is Associate Professor at the Institute of English Studies at the University of Lódz, Poland.
Paulina Pietrzak is Associate Professor at the Institute of English Studies at the University of Lódz, Poland.
Contents
List of Figures
List of Tables
Introduction
Chapter 1: (R)evolution of translation technology
1.1. History and evolution of translation tools
1.1.1. Machine translation
1.1.2. Computer-assisted translation (CAT) tools
1.1.3. Translation management systems
1.1.4. Writing assistants and checking tools
1.1.5. Generative artificial intelligence in translation
1.2. The current state of translation technology
1.3. Stages of AI development
Chapter 2: Translator-AI interaction
2.1. Augmented translation
2.2. Hybrid workflows in translation
2.3. The impact of technology on translator profession: new avenues and new
anxieties
2.4. Ethical considerations in AI-assisted language service provision
Chapter 3: Translators as AI-assisted language specialists
3.1. Translators' new roles and status
3.2. Future translator expertise: what is missing?
3.3. Technical skills for hybrid workflows
3.4. From anxiety to digital resilience
3.5. Personal resources and metacognitive capacity
3.6. The translator's self-concept in AI interactions
Chapter 4: Attitudes towards AI in translation: an academic exploration
4.1. Research design
4.2. Limitations of the study
4.3. Data analysis
4.3.1. Findings on the use of AI technologies in translation
4.3.2. Perspectives on GenAI integration in translator education
4.3.3. Risks associated with using GenAI tools in translator training
4.4. Summary of the findings: challenges and lessons learned
Chapter 5. Implications for translator training
5.1. To teach or not to teach?
5.2. What's in it for translation students?
5.3. Suggested ways of introducing AI-assisted translation practice
5.3.1. Exercises in AI-assisted translation
5.3.2. AI tools for terminology management
5.3.3. AI-assisted quality assessment
5.3.4. AI-generated feedback
5.3.5. Ethical code of conduct in AI use
5.4. Fostering personal resources in translator training
5.4.1. Self-reflection: what am I missing?
5.4.2. Self-efficacy: building digital resilience
5.4.3. Self-concept: reducing technological anxiety
Chapter 6: Final reflections
Appendix
Index
List of Figures
List of Tables
Introduction
Chapter 1: (R)evolution of translation technology
1.1. History and evolution of translation tools
1.1.1. Machine translation
1.1.2. Computer-assisted translation (CAT) tools
1.1.3. Translation management systems
1.1.4. Writing assistants and checking tools
1.1.5. Generative artificial intelligence in translation
1.2. The current state of translation technology
1.3. Stages of AI development
Chapter 2: Translator-AI interaction
2.1. Augmented translation
2.2. Hybrid workflows in translation
2.3. The impact of technology on translator profession: new avenues and new
anxieties
2.4. Ethical considerations in AI-assisted language service provision
Chapter 3: Translators as AI-assisted language specialists
3.1. Translators' new roles and status
3.2. Future translator expertise: what is missing?
3.3. Technical skills for hybrid workflows
3.4. From anxiety to digital resilience
3.5. Personal resources and metacognitive capacity
3.6. The translator's self-concept in AI interactions
Chapter 4: Attitudes towards AI in translation: an academic exploration
4.1. Research design
4.2. Limitations of the study
4.3. Data analysis
4.3.1. Findings on the use of AI technologies in translation
4.3.2. Perspectives on GenAI integration in translator education
4.3.3. Risks associated with using GenAI tools in translator training
4.4. Summary of the findings: challenges and lessons learned
Chapter 5. Implications for translator training
5.1. To teach or not to teach?
5.2. What's in it for translation students?
5.3. Suggested ways of introducing AI-assisted translation practice
5.3.1. Exercises in AI-assisted translation
5.3.2. AI tools for terminology management
5.3.3. AI-assisted quality assessment
5.3.4. AI-generated feedback
5.3.5. Ethical code of conduct in AI use
5.4. Fostering personal resources in translator training
5.4.1. Self-reflection: what am I missing?
5.4.2. Self-efficacy: building digital resilience
5.4.3. Self-concept: reducing technological anxiety
Chapter 6: Final reflections
Appendix
Index
Contents
List of Figures
List of Tables
Introduction
Chapter 1: (R)evolution of translation technology
1.1. History and evolution of translation tools
1.1.1. Machine translation
1.1.2. Computer-assisted translation (CAT) tools
1.1.3. Translation management systems
1.1.4. Writing assistants and checking tools
1.1.5. Generative artificial intelligence in translation
1.2. The current state of translation technology
1.3. Stages of AI development
Chapter 2: Translator-AI interaction
2.1. Augmented translation
2.2. Hybrid workflows in translation
2.3. The impact of technology on translator profession: new avenues and new
anxieties
2.4. Ethical considerations in AI-assisted language service provision
Chapter 3: Translators as AI-assisted language specialists
3.1. Translators' new roles and status
3.2. Future translator expertise: what is missing?
3.3. Technical skills for hybrid workflows
3.4. From anxiety to digital resilience
3.5. Personal resources and metacognitive capacity
3.6. The translator's self-concept in AI interactions
Chapter 4: Attitudes towards AI in translation: an academic exploration
4.1. Research design
4.2. Limitations of the study
4.3. Data analysis
4.3.1. Findings on the use of AI technologies in translation
4.3.2. Perspectives on GenAI integration in translator education
4.3.3. Risks associated with using GenAI tools in translator training
4.4. Summary of the findings: challenges and lessons learned
Chapter 5. Implications for translator training
5.1. To teach or not to teach?
5.2. What's in it for translation students?
5.3. Suggested ways of introducing AI-assisted translation practice
5.3.1. Exercises in AI-assisted translation
5.3.2. AI tools for terminology management
5.3.3. AI-assisted quality assessment
5.3.4. AI-generated feedback
5.3.5. Ethical code of conduct in AI use
5.4. Fostering personal resources in translator training
5.4.1. Self-reflection: what am I missing?
5.4.2. Self-efficacy: building digital resilience
5.4.3. Self-concept: reducing technological anxiety
Chapter 6: Final reflections
Appendix
Index
List of Figures
List of Tables
Introduction
Chapter 1: (R)evolution of translation technology
1.1. History and evolution of translation tools
1.1.1. Machine translation
1.1.2. Computer-assisted translation (CAT) tools
1.1.3. Translation management systems
1.1.4. Writing assistants and checking tools
1.1.5. Generative artificial intelligence in translation
1.2. The current state of translation technology
1.3. Stages of AI development
Chapter 2: Translator-AI interaction
2.1. Augmented translation
2.2. Hybrid workflows in translation
2.3. The impact of technology on translator profession: new avenues and new
anxieties
2.4. Ethical considerations in AI-assisted language service provision
Chapter 3: Translators as AI-assisted language specialists
3.1. Translators' new roles and status
3.2. Future translator expertise: what is missing?
3.3. Technical skills for hybrid workflows
3.4. From anxiety to digital resilience
3.5. Personal resources and metacognitive capacity
3.6. The translator's self-concept in AI interactions
Chapter 4: Attitudes towards AI in translation: an academic exploration
4.1. Research design
4.2. Limitations of the study
4.3. Data analysis
4.3.1. Findings on the use of AI technologies in translation
4.3.2. Perspectives on GenAI integration in translator education
4.3.3. Risks associated with using GenAI tools in translator training
4.4. Summary of the findings: challenges and lessons learned
Chapter 5. Implications for translator training
5.1. To teach or not to teach?
5.2. What's in it for translation students?
5.3. Suggested ways of introducing AI-assisted translation practice
5.3.1. Exercises in AI-assisted translation
5.3.2. AI tools for terminology management
5.3.3. AI-assisted quality assessment
5.3.4. AI-generated feedback
5.3.5. Ethical code of conduct in AI use
5.4. Fostering personal resources in translator training
5.4.1. Self-reflection: what am I missing?
5.4.2. Self-efficacy: building digital resilience
5.4.3. Self-concept: reducing technological anxiety
Chapter 6: Final reflections
Appendix
Index