142,99 €
142,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
142,99 €
Als Download kaufen
142,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
142,99 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
0 °P sammeln
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hybridized and coupled nanogenerators have received increasing attention due to their potential applications in multi-energy scavenging and sensor fields. This comprehensive reviews on them giving a good tool for related academics and professionals.
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 22.37MB
Andere Kunden interessierten sich auch für
- Ya YangHybridized and Coupled Nanogenerators (eBook, ePUB)142,99 €
- Flexible and Stretchable Triboelectric Nanogenerator Devices (eBook, PDF)142,99 €
- Hybrid Perovskite Solar Cells (eBook, PDF)183,99 €
- Perovskite Solar Cells (eBook, PDF)162,99 €
- Organic Thermoelectrics (eBook, PDF)142,99 €
- Flexible and Wearable Electronics for Smart Clothing (eBook, PDF)142,99 €
- Tuan Anh PhamWide Bandgap Nanowires (eBook, PDF)142,99 €
-
-
-
Hybridized and coupled nanogenerators have received increasing attention due to their potential applications in multi-energy scavenging and sensor fields. This comprehensive reviews on them giving a good tool for related academics and professionals.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley-VCH
- Seitenzahl: 366
- Erscheinungstermin: 13. August 2020
- Englisch
- ISBN-13: 9783527822386
- Artikelnr.: 60035833
- Verlag: Wiley-VCH
- Seitenzahl: 366
- Erscheinungstermin: 13. August 2020
- Englisch
- ISBN-13: 9783527822386
- Artikelnr.: 60035833
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Ya Yang is currently Research Scientist at Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, China. After his PhD from University of Science and Technology Beijing, China, he worked as a postdoctoral researcher in Georgia Institute of Technology, USA. His research interests include the hybridized nanogenerators, self-powered sensors, solar cells, and Li-ion batteries. He has published more than 120 Journal articles and holds 30 patents.
1 OVERVIEW
1.1 Introduction
1.2 Hybridized nanogenerators
1.3 Coupled nanogenerators
1.4 Applications
1.5 Conclusion and prospects
2 WIND-DRIVEN TRIBOELECTRIC NANOGENERATORS
2.1 Introduction
2.2 Conventional wind harvester
2.3 Triboelectric nanogenerators for scavenging wind energy
2.4 Comparison
2.5 Conclusion
3 ELECTROMAGNETIC-TRIBOELECTRIC HYBRIDIZED NANOGENERATORS
3.1 Introduction
3.2 Working mechanisms
3.3 Hybridized devices structure and working mechanisms
3.4 Materials
3.5 Performance
3.6 Applications
3.7. Summary and perspectives
4 OTHER HYBRIDIZED NANOGENERATORS
4.1 Introduction
4.2 Hybridized photoelectric and piezoelectric nanogenerator
4.3 Hybridized photoelectric and triboelectric nanogenerator
4.4 Hybridized photoelectric and pyroelectric nanogenerator
4.5 Conclusions and Prospects
5 HYBRIDIZING NANOGENERATORS AND SENSORS
5.1 Introduction
5.2 Materials
5.3 Design of self-powered sensors
5.4 Performance
5.5 Applications
5.6 Conclusion and Prospects
6 HYBRIDIZING NANOGENERATORS AND ENERGY STORAGE DEVICES
6.1 Introduction
6.2 Working Mechanisms
6.3 Materials
6.4 Devices Structure and Design
6.5 Performance
6.6 Applications
6.7 Conclusions and Prospects
7 PYROELECTRIC AND THERMOELECTRIC NANOGENERATORS
7.1 Introduction
7.2 Working Mechanisms
7.3 Progress of Pyroelectric Nanogenerators
7.4 Progress of Thermoelectric Nanogenerators
7.5 Conclusions and Prospects
8 PHOTOVOLTAIC-PYROELECTRIC COUPLED EFFECT NANOGENERATORS
8.1 Introduction
8.2 Basic Principle
8.3 Materials
8.4 Device Design
8.5 Performance
8.6 Applications
8.7 Conclusions and Prospects
9 MUTI-EFFECTS COUPLED NANOGENERATORS
9.1 Introduction
9.2 Materials
9.3 Device Design and Working Principle
9.4 Performance
9.5 Applications
9.6 Conclusions and Prospects
10 COUPLED NANOGENERATORS FOR NEW PHYSICAL EFFECTS
10.1 Introduction
10.2 Pyro-phototronic effect
10.3 Ferro-pyro-phototronic effect
10.4 Thermo-phototronic effect
10.5 Conclusions and Prospects
1.1 Introduction
1.2 Hybridized nanogenerators
1.3 Coupled nanogenerators
1.4 Applications
1.5 Conclusion and prospects
2 WIND-DRIVEN TRIBOELECTRIC NANOGENERATORS
2.1 Introduction
2.2 Conventional wind harvester
2.3 Triboelectric nanogenerators for scavenging wind energy
2.4 Comparison
2.5 Conclusion
3 ELECTROMAGNETIC-TRIBOELECTRIC HYBRIDIZED NANOGENERATORS
3.1 Introduction
3.2 Working mechanisms
3.3 Hybridized devices structure and working mechanisms
3.4 Materials
3.5 Performance
3.6 Applications
3.7. Summary and perspectives
4 OTHER HYBRIDIZED NANOGENERATORS
4.1 Introduction
4.2 Hybridized photoelectric and piezoelectric nanogenerator
4.3 Hybridized photoelectric and triboelectric nanogenerator
4.4 Hybridized photoelectric and pyroelectric nanogenerator
4.5 Conclusions and Prospects
5 HYBRIDIZING NANOGENERATORS AND SENSORS
5.1 Introduction
5.2 Materials
5.3 Design of self-powered sensors
5.4 Performance
5.5 Applications
5.6 Conclusion and Prospects
6 HYBRIDIZING NANOGENERATORS AND ENERGY STORAGE DEVICES
6.1 Introduction
6.2 Working Mechanisms
6.3 Materials
6.4 Devices Structure and Design
6.5 Performance
6.6 Applications
6.7 Conclusions and Prospects
7 PYROELECTRIC AND THERMOELECTRIC NANOGENERATORS
7.1 Introduction
7.2 Working Mechanisms
7.3 Progress of Pyroelectric Nanogenerators
7.4 Progress of Thermoelectric Nanogenerators
7.5 Conclusions and Prospects
8 PHOTOVOLTAIC-PYROELECTRIC COUPLED EFFECT NANOGENERATORS
8.1 Introduction
8.2 Basic Principle
8.3 Materials
8.4 Device Design
8.5 Performance
8.6 Applications
8.7 Conclusions and Prospects
9 MUTI-EFFECTS COUPLED NANOGENERATORS
9.1 Introduction
9.2 Materials
9.3 Device Design and Working Principle
9.4 Performance
9.5 Applications
9.6 Conclusions and Prospects
10 COUPLED NANOGENERATORS FOR NEW PHYSICAL EFFECTS
10.1 Introduction
10.2 Pyro-phototronic effect
10.3 Ferro-pyro-phototronic effect
10.4 Thermo-phototronic effect
10.5 Conclusions and Prospects
1 OVERVIEW
1.1 Introduction
1.2 Hybridized nanogenerators
1.3 Coupled nanogenerators
1.4 Applications
1.5 Conclusion and prospects
2 WIND-DRIVEN TRIBOELECTRIC NANOGENERATORS
2.1 Introduction
2.2 Conventional wind harvester
2.3 Triboelectric nanogenerators for scavenging wind energy
2.4 Comparison
2.5 Conclusion
3 ELECTROMAGNETIC-TRIBOELECTRIC HYBRIDIZED NANOGENERATORS
3.1 Introduction
3.2 Working mechanisms
3.3 Hybridized devices structure and working mechanisms
3.4 Materials
3.5 Performance
3.6 Applications
3.7. Summary and perspectives
4 OTHER HYBRIDIZED NANOGENERATORS
4.1 Introduction
4.2 Hybridized photoelectric and piezoelectric nanogenerator
4.3 Hybridized photoelectric and triboelectric nanogenerator
4.4 Hybridized photoelectric and pyroelectric nanogenerator
4.5 Conclusions and Prospects
5 HYBRIDIZING NANOGENERATORS AND SENSORS
5.1 Introduction
5.2 Materials
5.3 Design of self-powered sensors
5.4 Performance
5.5 Applications
5.6 Conclusion and Prospects
6 HYBRIDIZING NANOGENERATORS AND ENERGY STORAGE DEVICES
6.1 Introduction
6.2 Working Mechanisms
6.3 Materials
6.4 Devices Structure and Design
6.5 Performance
6.6 Applications
6.7 Conclusions and Prospects
7 PYROELECTRIC AND THERMOELECTRIC NANOGENERATORS
7.1 Introduction
7.2 Working Mechanisms
7.3 Progress of Pyroelectric Nanogenerators
7.4 Progress of Thermoelectric Nanogenerators
7.5 Conclusions and Prospects
8 PHOTOVOLTAIC-PYROELECTRIC COUPLED EFFECT NANOGENERATORS
8.1 Introduction
8.2 Basic Principle
8.3 Materials
8.4 Device Design
8.5 Performance
8.6 Applications
8.7 Conclusions and Prospects
9 MUTI-EFFECTS COUPLED NANOGENERATORS
9.1 Introduction
9.2 Materials
9.3 Device Design and Working Principle
9.4 Performance
9.5 Applications
9.6 Conclusions and Prospects
10 COUPLED NANOGENERATORS FOR NEW PHYSICAL EFFECTS
10.1 Introduction
10.2 Pyro-phototronic effect
10.3 Ferro-pyro-phototronic effect
10.4 Thermo-phototronic effect
10.5 Conclusions and Prospects
1.1 Introduction
1.2 Hybridized nanogenerators
1.3 Coupled nanogenerators
1.4 Applications
1.5 Conclusion and prospects
2 WIND-DRIVEN TRIBOELECTRIC NANOGENERATORS
2.1 Introduction
2.2 Conventional wind harvester
2.3 Triboelectric nanogenerators for scavenging wind energy
2.4 Comparison
2.5 Conclusion
3 ELECTROMAGNETIC-TRIBOELECTRIC HYBRIDIZED NANOGENERATORS
3.1 Introduction
3.2 Working mechanisms
3.3 Hybridized devices structure and working mechanisms
3.4 Materials
3.5 Performance
3.6 Applications
3.7. Summary and perspectives
4 OTHER HYBRIDIZED NANOGENERATORS
4.1 Introduction
4.2 Hybridized photoelectric and piezoelectric nanogenerator
4.3 Hybridized photoelectric and triboelectric nanogenerator
4.4 Hybridized photoelectric and pyroelectric nanogenerator
4.5 Conclusions and Prospects
5 HYBRIDIZING NANOGENERATORS AND SENSORS
5.1 Introduction
5.2 Materials
5.3 Design of self-powered sensors
5.4 Performance
5.5 Applications
5.6 Conclusion and Prospects
6 HYBRIDIZING NANOGENERATORS AND ENERGY STORAGE DEVICES
6.1 Introduction
6.2 Working Mechanisms
6.3 Materials
6.4 Devices Structure and Design
6.5 Performance
6.6 Applications
6.7 Conclusions and Prospects
7 PYROELECTRIC AND THERMOELECTRIC NANOGENERATORS
7.1 Introduction
7.2 Working Mechanisms
7.3 Progress of Pyroelectric Nanogenerators
7.4 Progress of Thermoelectric Nanogenerators
7.5 Conclusions and Prospects
8 PHOTOVOLTAIC-PYROELECTRIC COUPLED EFFECT NANOGENERATORS
8.1 Introduction
8.2 Basic Principle
8.3 Materials
8.4 Device Design
8.5 Performance
8.6 Applications
8.7 Conclusions and Prospects
9 MUTI-EFFECTS COUPLED NANOGENERATORS
9.1 Introduction
9.2 Materials
9.3 Device Design and Working Principle
9.4 Performance
9.5 Applications
9.6 Conclusions and Prospects
10 COUPLED NANOGENERATORS FOR NEW PHYSICAL EFFECTS
10.1 Introduction
10.2 Pyro-phototronic effect
10.3 Ferro-pyro-phototronic effect
10.4 Thermo-phototronic effect
10.5 Conclusions and Prospects