177,99 €
177,99 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
177,99 €
177,99 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
Als Download kaufen
177,99 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
Jetzt verschenken
177,99 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
  • Format: PDF

Water. Except for air, it is the most important ingredient to all life on Earth. It surrounds us every day. We are literally bathed in it, we cook our food with it, and we need a steady stream of it in our bodies every single day just to survive. But water, and the study of it, is one of the most important and unheralded branches of engineering, affecting every other aspect of engineering in almost every industry. We harness its power for energy, we inject massive blasts of it into the earth to extract oil, gas, and minerals, and we use it in nearly every single industrial application,…mehr

Produktbeschreibung
Water. Except for air, it is the most important ingredient to all life on Earth. It surrounds us every day. We are literally bathed in it, we cook our food with it, and we need a steady stream of it in our bodies every single day just to survive. But water, and the study of it, is one of the most important and unheralded branches of engineering, affecting every other aspect of engineering in almost every industry. We harness its power for energy, we inject massive blasts of it into the earth to extract oil, gas, and minerals, and we use it in nearly every single industrial application, including food processing, refining, manufacturing, and waste disposal, just to name a few. Hyraulic modeling is, essentially, the understanding and prediction of fluid flow and its applications in industrial, municipal, and environmental settings, whether in a creekbed, locked in the pores of rocks deep in the earth, or in the ocean. Mathematical models, which started out with mechanical pencils and drafting tables originally, have been increasingly relied upon over the last few decades, due to the invention, growth, and refinement of computers. Physical modeling, however, is still practiced in laboratories, and it is the intersection of physical and mathematical modeling of fluid flow that is most successful in creating models that are safer, less costly, and are better for the environment. Hydraulic Modeling introduces and explores this incredibly important science, from the most basic tenets to valuable real-world applications that are used in industry today. It is the only volume on the market to offer a thorough coverage of the subject without adding lots of useless fluff or inapplicable appendices. It is a must-have for any engineer, scientist, or student working with hydraulic modeling, as a daily reference or a textbook.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Victor M. Lyatkher, PhD, is a professor, engineer, and inventor.. He was educated in Moscow and Leningrad, and has developed and patented numerous processes and machines. These deal mainly with renewable energy sources such as tidal power, water turbines, and vertical axis wind turbines. He developed a new method to forecast long-term variations in the Caspian Sea level, and designed a new kind of low head turbine. Mr. Lyatkher has worked for over thirty years in the wind and hydro-power industry. He has received several prizes and awards for his accomplishments, including the Prize of the Council of Ministers of the USSR, the Award of the Indian Society of Earthquake Technology, and five medals of the All Union USSR Exhibition, gold, silver and bronze.He has published numerous books (in russian) on the subject of renewable energy, and was the original inventor of helical turbine, patented in the USSR in 1983. Alexander M. Proudovsky, PhD, graduated from the Moscow Engineering and Construction Institute in 1955, received his PhD in 1976 and became Doctor of Technical Sciences in 2000. A renowned expert in the field of hydraulic and hydrothermal modeling of hydraulic structures and nuclear power facilities and a member of the International Association for Hydraulic research since 1974, he has written over 200 articles and 2 books on modeling, both in collaboration with Victor Lyatkher.