Ke Liu, Chunshan Song, Velu Subramani
Hydrogen and Syngas Production and Purification Technologies (eBook, PDF)
123,99 €
123,99 €
inkl. MwSt.
Sofort per Download lieferbar
123,99 €
Als Download kaufen
123,99 €
inkl. MwSt.
Sofort per Download lieferbar
Ke Liu, Chunshan Song, Velu Subramani
Hydrogen and Syngas Production and Purification Technologies (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
* Covers the timely topic of fuel cells and hydrogen-based energy from its fundamentals to practical applications * Serves as a resource for practicing researchers and as a text in graduate-level programs * Tackles crucial aspects in light of the new directions in the energy industry, in particular how to integrate fuel processing into contemporary systems like nuclear and gas power plants * Includes homework-style problems
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 5.71MB
* Covers the timely topic of fuel cells and hydrogen-based energy from its fundamentals to practical applications * Serves as a resource for practicing researchers and as a text in graduate-level programs * Tackles crucial aspects in light of the new directions in the energy industry, in particular how to integrate fuel processing into contemporary systems like nuclear and gas power plants * Includes homework-style problems
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 560
- Erscheinungstermin: 25. November 2009
- Englisch
- ISBN-13: 9780470561249
- Artikelnr.: 37297296
- Verlag: John Wiley & Sons
- Seitenzahl: 560
- Erscheinungstermin: 25. November 2009
- Englisch
- ISBN-13: 9780470561249
- Artikelnr.: 37297296
KE LIU, PhD, MBA, is the Principal Scientist and Project Leader of the Energy and Propulsion Technologies Division of GE Global Research Center, working on different technologies related to gasification, IGCC, syngas, and fuel conversion. Currently, he leads a team of engineers to develop the dry feeding technology for next-generation GE gasifier for high-moisture, low-rank coal and biomass gasification. Dr. Liu started his career at Exxon-Mobil and then UTC Fuel Cells, working on various fuel and H2 production technologies. He is not only a leading expert on energy, fuels, and gasification, but also an industrial leader who led many large R&D projects funded by DOE and large U.S. energy corporations such as GE, Shell-UTC, and Exxon-Mobil. A recipient of numerous awards, including the 2006 National Emerald Honors Special Recognition Award, Dr. Liu has served as a board member and program chair of International Pittsburgh Coal Conference, a board member of the Energy Center of CalTech (PEER), and the associate editor of the Energy and Fuels Journal. CHUNSHAN SONG, PhD, is a Professor of Fuel Science and Chemical Engineering and the Director of the EMS Energy Institute at Pennsylvania State University. A recipient of numerous awards, he has been extensively published, and his research on clean fuels and catalysis has been funded by government and industry. Also, Dr. Song has served as chair for the ACS Division of Petroleum Chemistry; chair for ACS Fuel Chemistry Division; and advisory board chair and program chair for International Pittsburgh Coal Conference. VELU SUBRAMANI, PhD, is a Research Scientist working for the BP Refining and Logistics Technology team. He has over fifteen years of research experience in heterogeneous catalysis for fine chemicals synthesis, energy production, and environmental protection. He is the recipient of research fellowships from Switzerland and the Science and Technology Agency (STA) of Japan. Dr. Subramani is the author of over fifty peer-reviewed articles in international journals and the author or co-author of several patents. He served as the program chair for the ACS Division of Fuel Chemistry.
Preface xiii
Contributors xv
1. Introduction to Hydrogen and Syngas Production and Purification
Technologies 1
Chunshan Song
1.1 Importance of Hydrogen and Syngas Production 1
1.2 Principles of Syngas and Hydrogen Production 4
1.3 Options for Hydrogen and Syngas Production 6
1.4 Hydrogen Energy and Fuel Cells 8
1.5 Fuel Processing for Fuel Cells 9
1.6 Sulfur Removal 10
1.7 CO2 Capture and Separation 11
1.8 Scope of the Book 11
Acknowledgments 12
References 12
2. Catalytic Steam Reforming Technology for the Production of Hydrogen and
Syngas 14
Velu Subramani, Pradeepkumar Sharma, Lingzhi Zhang, and Ke Liu
2.1 Introduction 14
2.2 Steam Reforming of Light Hydrocarbons 17
2.2.1 Steam Reforming of Natural Gas 17
2.2.2 Steam Reforming of C2-C4 Hydrocarbons 36
2.3 Steam Reforming of Liquid Hydrocarbons 46
2.3.1 Chemistry 46
2.3.2 Thermodynamics 47
2.3.3 Catalyst 52
2.3.4 Kinetics 58
2.3.5 Mechanism 61
2.3.6 Prereforming 61
2.4 Steam Reforming of Alcohols 65
2.4.1 Steam Reforming of Methanol (SRM) 65
2.4.2 Steam Reforming of Ethanol (SRE) 77
2.5 Carbon Formation and Catalyst Deactivation 106
2.6 Recent Developments in Reforming Technologies 109
2.6.1 Microreactor Reformer 109
2.6.2 Plate Reformer 110
2.6.3 Membrane Reformer 110
2.6.4 Plasma Reforming (PR) 112
2.7 Summary 112
References 112
3. Catalytic Partial Oxidation and Autothermal Reforming 127
Ke Liu, Gregg D. Deluga, Anders Bitsch-Larsen, Lanny D. Schmidt, and
Lingzhi Zhang
3.1 Introduction 127
3.2 Natural Gas Reforming Technologies: Fundamental Chemistry 130
3.2.1 ATR 130
3.2.2 Homogeneous POX 132
3.2.3 CPO 133
3.3 Development/Commercialization Status of ATR, POX, and CPO Reformers 136
3.4 CPO Catalysts 138
3.4.1 Nickel-Based CPO Catalysts 138
3.4.2 Precious Metal CPO Catalysts 142
3.5 CPO Mechanism and Kinetics 146
3.5.1 Ni Catalyst Mechanism and Reactor Kinetics Modeling 146
3.5.2 Precious Metal Catalyst Mechanism and Reactor Kinetics Modeling 147
3.6 Start-Up and Shutdown Procedure of CPO 149
3.7 CPO of Renewable Fuels 150
3.8 Summary 151
Acknowledgments 151
References 151
4. Coal Gasification 156
Ke Liu, Zhe Cui, and Thomas H. Fletcher
4.1 Introduction to Gasification 156
4.2 Coal Gasification History 158
4.3 Coal Gasification Chemistry 160
4.3.1 Pyrolysis Process 161
4.3.2 Combustion of Volatiles 163
4.3.3 Char Gasification Reactions 164
4.3.4 Ash-Slag Chemistry 166
4.4 Gasification Thermodynamics 169
4.5 Gasification Kinetics 173
4.5.1 Reaction Mechanisms and the Kinetics of the Boudouard Reaction 174
4.5.2 Reaction Mechanisms and the Kinetics of the Water-Gas Reaction 175
4.6 Classification of Different Gasifiers 176
4.7 GE (Texaco) Gasification Technology with CWS Feeding 178
4.7.1 Introduction to GE Gasification Technology 178
4.7.2 GE Gasification Process 179
4.7.3 Coal Requirements of the GE Gasifier 184
4.7.4 Summary of GE Slurry Feeding Gasification Technology 186
4.8 Shell Gasification Technology with Dry Feeding 187
4.8.1 Introduction to Dry-Feeding Coal Gasification 187
4.8.2 Shell Gasification Process 189
4.8.3 Coal Requirements of Shell Gasification Process 193
4.8.4 Summary of Dry-Feeding Shell Gasifier 194
4.9 Other Gasification Technologies 195
4.9.1 GSP Gasification Technology 195
4.9.2 East China University of Science and Technology (ECUST) Gasifier 198
4.9.3 TPRI Gasifier 199
4.9.4 Fluidized-Bed Gasifiers 199
4.9.5 ConocoPhillips Gasifier 202
4.9.6 Moving-Bed and Fixed-Bed Gasifiers: Lurgi's Gasification Technology
203
4.9.7 Summary of Different Gasification Technologies 205
4.10 Challenges in Gasification Technology: Some Examples 206
4.10.1 High AFT Coals 206
4.10.2 Increasing the Coal Concentration in the CWS 207
4.10.3 Improved Performance and Life of Gasifier Nozzles 208
4.10.4 Gasifier Refractory Brick Life 208
4.10.5 Gasifier Scale-Up 209
4.11 Syngas Cleanup 210
4.12 Integration of Coal Gasification with Coal Polygeneration Systems 215
References 216
5. Desulfurization Technologies 219
Chunshan Song and Xiaoliang Ma
5.1 Challenges in Deep Desulfurization for Hydrocarbon Fuel Processing and
Fuel Cell Applications 219
5.2 HDS Technology 225
5.2.1 Natural Gas 225
5.2.2 Gasoline 226
5.2.3 Diesel 233
5.3 Adsorptive Desulfurization 243
5.3.1 Natural Gas 244
5.3.2 Gasoline 246
5.3.3 Jet Fuel 256
5.3.4 Diesel 258
5.4 Post-Reformer Desulfurization: H2S Sorption 264
5.4.1 H2S Sorbents 265
5.4.2 H2S Adsorption Thermodynamics 268
5.5 Desulfurization of Coal Gasification Gas 272
5.5.1 Absorption by Solvents 275
5.5.2 Hot and Warm Gas Cleanup 291
5.6 ODS 293
5.6.1 Natural Gas 293
5.6.2 Liquid Hydrocarbon Fuels 295
5.7 Summary 298
References 300
6. Water-Gas Shift Technologies 311
Alex Platon and Yong Wang
6.1 Introduction 311
6.2 Thermodynamic Considerations 312
6.3 Industrial Processes and Catalysts 313
6.3.1 Ferrochrome Catalyst for HTS Reaction 313
6.3.2 CuZn Catalysts for LTS Reaction 314
6.3.3 CoMo Catalyst for LTS Reaction 314
6.4 Reaction Mechanism and Kinetics 315
6.4.1 Ferrochrome Catalyst 315
6.4.2 CuZn-Based Catalyst 317
6.4.3 CoMo Catalyst 317
6.5 Catalyst Improvements and New Classes of Catalysts 318
6.5.1 Improvements to the Cu- and Fe-Based Catalysts 318
6.5.2 New Reaction Technologies 319
6.5.3 New Classes of Catalysts 321
References 326
7. Removal of Trace Contaminants from Fuel Processing Reformate:
Preferential Oxidation (Prox) 329
Marco J. Castaldi
7.1 Introduction 329
7.2 Reactions of Prox 331
7.3 General Prox Reactor Performance 333
7.3.1 Multiple Steady-State Operation 337
7.3.2 Water-Oxygen Synergy 339
7.4 Catalysts Formulations 342
7.5 Reactor Geometries 344
7.5.1 Monolithic Reactors 345
7.5.2 SCT Reactors 346
7.5.3 Microchannel Reactors 349
7.5.4 MEMS-Based Reactors 350
7.6 Commercial Units 352
Acknowledgments 353
References 353
8. Hydrogen Membrane Technologies and Application in Fuel Processing 357
David Edlund
8.1 Introduction 357
8.2 Fundamentals of Membrane-Based Separations 358
8.3 Membrane Purification for Hydrogen Energy and Fuel Cell Applications
363
8.3.1 Product Hydrogen Purity 365
8.3.2 Process Scale 367
8.3.3 Energy Efficiency 368
8.4 Membrane Modules for Hydrogen Separation and Purification 369
8.5 Dense Metal Membranes 372
8.5.1 Metal Membrane Durability and Selectivity 375
8.6 Integration of Reforming and Membrane-Based Purification 378
8.7 Commercialization Activities 380
References 383
9. CO2-Selective Membranes for Hydrogen Fuel Processing 385
Jin Huang, Jian Zou, and W.S. Winston Ho
9.1 Introduction 385
9.2 Synthesis of Novel CO2-Selective Membranes 388
9.3 Model Description 389
9.4 Results and Discussion 391
9.4.1 Transport Properties of CO2-Selective Membrane 391
9.4.2 Modeling Predictions 400
9.5 Conclusions 408
Glossary 410
Acknowledgments 410
References 411
10. Pressure Swing Adsorption Technology for Hydrogen Production 414
Shivaji Sircar and Timothy C. Golden
10.1 Introduction 414
10.2 PSA Processes for Hydrogen Purification 418
10.2.1 PSA Processes for Production of Hydrogen Only 418
10.2.2 Process for Coproduction of Hydrogen and Carbon Dioxide 422
10.2.3 Processes for the Production of Ammonia Synthesis Gas 425
10.3 Adsorbents for Hydrogen PSA Processes 426
10.3.1 Adsorbents for Bulk CO2 Removal 427
10.3.2 Adsorbents for Dilute CO and N2 Removal 429
10.3.3 Adsorbents for Dilute CH4 Removal 432
10.3.4 Adsorbents for C1-C4 Hydrocarbon Removal 432
10.3.5 Other Adsorbent and Related Improvements in the H2 PSA 434
10.4 Future Trends for Hydrogen PSA 435
10.4.1 RPSA Cycles for Hydrogen Purification 436
10.4.2 Structured Adsorbents 438
10.4.3 Sorption-Enhanced Reaction Process (SERP) for H2 Production 439
10.5 PSA Process Reliability 441
10.6 Improved Hydrogen Recovery by PSA Processes 441
10.6.1 Integration with Additional PSA System 441
10.6.2 Hybrid PSA-Adsorbent Membrane System 442
10.7 Engineering Process Design 444
10.8 Summary 447
References 447
11. Integration of H2/Syngas Production Technologies with Future Energy
Systems 451
Wei Wei, Parag Kulkarni, and Ke Liu
11.1 Overview of Future Energy Systems and Challenges 451
11.2 Application of Reforming-Based Syngas Technology 454
11.2.1 NGCC Plants 454
11.2.2 Integration of H2/Syngas Production Technologies in NGCC Plants 455
11.3 Application of Gasification-Based Syngas Technology 465
11.3.1 IGCC Plant 468
11.4 Application of H2/Syngas Generation Technology to Liquid Fuels 477
11.4.1 Coal-to-H2 Process Description 479
11.4.2 Coal-to-Hydrogen System Performance and Economics 481
11.5 Summary 483
References 483
12. Coal and Syngas to Liquids 486
Ke Liu, Zhe Cui, Wei Chen, and Lingzhi Zhang
12.1 Overview and History of Coal to Liquids (CTL) 486
12.2 Direct Coal Liquefaction (DCTL) 488
12.2.1 DCTL Process 488
12.2.2 The Kohleoel Process 490
12.2.3 NEDOL (NEDO Liquefaction) Process 491
12.2.4 The HTI-Coal Process 494
12.2.5 Other Single-Stage Processes 495
12.3 Indirect Coal to Liquid (ICTL) 496
12.3.1 Introduction 496
12.3.2 FT Synthesis 498
12.4 Mobil Methanol to Gasoline (MTG) 510
12.5 SMDS 511
12.6 Hybrid Coal Liquefaction 512
12.7 Coal to Methanol 513
12.7.1 Introduction of Methanol Synthesis 513
12.7.2 Methanol Synthesis Catalysts 514
12.7.3 Methanol Synthesis Reactor Systems 514
12.7.4 Liquid-Phase Methanol (LPMEOH(TM)) Process 516
12.8 Coal to Dimethyl Ether (DME) 519
References 520
Index 522
Contributors xv
1. Introduction to Hydrogen and Syngas Production and Purification
Technologies 1
Chunshan Song
1.1 Importance of Hydrogen and Syngas Production 1
1.2 Principles of Syngas and Hydrogen Production 4
1.3 Options for Hydrogen and Syngas Production 6
1.4 Hydrogen Energy and Fuel Cells 8
1.5 Fuel Processing for Fuel Cells 9
1.6 Sulfur Removal 10
1.7 CO2 Capture and Separation 11
1.8 Scope of the Book 11
Acknowledgments 12
References 12
2. Catalytic Steam Reforming Technology for the Production of Hydrogen and
Syngas 14
Velu Subramani, Pradeepkumar Sharma, Lingzhi Zhang, and Ke Liu
2.1 Introduction 14
2.2 Steam Reforming of Light Hydrocarbons 17
2.2.1 Steam Reforming of Natural Gas 17
2.2.2 Steam Reforming of C2-C4 Hydrocarbons 36
2.3 Steam Reforming of Liquid Hydrocarbons 46
2.3.1 Chemistry 46
2.3.2 Thermodynamics 47
2.3.3 Catalyst 52
2.3.4 Kinetics 58
2.3.5 Mechanism 61
2.3.6 Prereforming 61
2.4 Steam Reforming of Alcohols 65
2.4.1 Steam Reforming of Methanol (SRM) 65
2.4.2 Steam Reforming of Ethanol (SRE) 77
2.5 Carbon Formation and Catalyst Deactivation 106
2.6 Recent Developments in Reforming Technologies 109
2.6.1 Microreactor Reformer 109
2.6.2 Plate Reformer 110
2.6.3 Membrane Reformer 110
2.6.4 Plasma Reforming (PR) 112
2.7 Summary 112
References 112
3. Catalytic Partial Oxidation and Autothermal Reforming 127
Ke Liu, Gregg D. Deluga, Anders Bitsch-Larsen, Lanny D. Schmidt, and
Lingzhi Zhang
3.1 Introduction 127
3.2 Natural Gas Reforming Technologies: Fundamental Chemistry 130
3.2.1 ATR 130
3.2.2 Homogeneous POX 132
3.2.3 CPO 133
3.3 Development/Commercialization Status of ATR, POX, and CPO Reformers 136
3.4 CPO Catalysts 138
3.4.1 Nickel-Based CPO Catalysts 138
3.4.2 Precious Metal CPO Catalysts 142
3.5 CPO Mechanism and Kinetics 146
3.5.1 Ni Catalyst Mechanism and Reactor Kinetics Modeling 146
3.5.2 Precious Metal Catalyst Mechanism and Reactor Kinetics Modeling 147
3.6 Start-Up and Shutdown Procedure of CPO 149
3.7 CPO of Renewable Fuels 150
3.8 Summary 151
Acknowledgments 151
References 151
4. Coal Gasification 156
Ke Liu, Zhe Cui, and Thomas H. Fletcher
4.1 Introduction to Gasification 156
4.2 Coal Gasification History 158
4.3 Coal Gasification Chemistry 160
4.3.1 Pyrolysis Process 161
4.3.2 Combustion of Volatiles 163
4.3.3 Char Gasification Reactions 164
4.3.4 Ash-Slag Chemistry 166
4.4 Gasification Thermodynamics 169
4.5 Gasification Kinetics 173
4.5.1 Reaction Mechanisms and the Kinetics of the Boudouard Reaction 174
4.5.2 Reaction Mechanisms and the Kinetics of the Water-Gas Reaction 175
4.6 Classification of Different Gasifiers 176
4.7 GE (Texaco) Gasification Technology with CWS Feeding 178
4.7.1 Introduction to GE Gasification Technology 178
4.7.2 GE Gasification Process 179
4.7.3 Coal Requirements of the GE Gasifier 184
4.7.4 Summary of GE Slurry Feeding Gasification Technology 186
4.8 Shell Gasification Technology with Dry Feeding 187
4.8.1 Introduction to Dry-Feeding Coal Gasification 187
4.8.2 Shell Gasification Process 189
4.8.3 Coal Requirements of Shell Gasification Process 193
4.8.4 Summary of Dry-Feeding Shell Gasifier 194
4.9 Other Gasification Technologies 195
4.9.1 GSP Gasification Technology 195
4.9.2 East China University of Science and Technology (ECUST) Gasifier 198
4.9.3 TPRI Gasifier 199
4.9.4 Fluidized-Bed Gasifiers 199
4.9.5 ConocoPhillips Gasifier 202
4.9.6 Moving-Bed and Fixed-Bed Gasifiers: Lurgi's Gasification Technology
203
4.9.7 Summary of Different Gasification Technologies 205
4.10 Challenges in Gasification Technology: Some Examples 206
4.10.1 High AFT Coals 206
4.10.2 Increasing the Coal Concentration in the CWS 207
4.10.3 Improved Performance and Life of Gasifier Nozzles 208
4.10.4 Gasifier Refractory Brick Life 208
4.10.5 Gasifier Scale-Up 209
4.11 Syngas Cleanup 210
4.12 Integration of Coal Gasification with Coal Polygeneration Systems 215
References 216
5. Desulfurization Technologies 219
Chunshan Song and Xiaoliang Ma
5.1 Challenges in Deep Desulfurization for Hydrocarbon Fuel Processing and
Fuel Cell Applications 219
5.2 HDS Technology 225
5.2.1 Natural Gas 225
5.2.2 Gasoline 226
5.2.3 Diesel 233
5.3 Adsorptive Desulfurization 243
5.3.1 Natural Gas 244
5.3.2 Gasoline 246
5.3.3 Jet Fuel 256
5.3.4 Diesel 258
5.4 Post-Reformer Desulfurization: H2S Sorption 264
5.4.1 H2S Sorbents 265
5.4.2 H2S Adsorption Thermodynamics 268
5.5 Desulfurization of Coal Gasification Gas 272
5.5.1 Absorption by Solvents 275
5.5.2 Hot and Warm Gas Cleanup 291
5.6 ODS 293
5.6.1 Natural Gas 293
5.6.2 Liquid Hydrocarbon Fuels 295
5.7 Summary 298
References 300
6. Water-Gas Shift Technologies 311
Alex Platon and Yong Wang
6.1 Introduction 311
6.2 Thermodynamic Considerations 312
6.3 Industrial Processes and Catalysts 313
6.3.1 Ferrochrome Catalyst for HTS Reaction 313
6.3.2 CuZn Catalysts for LTS Reaction 314
6.3.3 CoMo Catalyst for LTS Reaction 314
6.4 Reaction Mechanism and Kinetics 315
6.4.1 Ferrochrome Catalyst 315
6.4.2 CuZn-Based Catalyst 317
6.4.3 CoMo Catalyst 317
6.5 Catalyst Improvements and New Classes of Catalysts 318
6.5.1 Improvements to the Cu- and Fe-Based Catalysts 318
6.5.2 New Reaction Technologies 319
6.5.3 New Classes of Catalysts 321
References 326
7. Removal of Trace Contaminants from Fuel Processing Reformate:
Preferential Oxidation (Prox) 329
Marco J. Castaldi
7.1 Introduction 329
7.2 Reactions of Prox 331
7.3 General Prox Reactor Performance 333
7.3.1 Multiple Steady-State Operation 337
7.3.2 Water-Oxygen Synergy 339
7.4 Catalysts Formulations 342
7.5 Reactor Geometries 344
7.5.1 Monolithic Reactors 345
7.5.2 SCT Reactors 346
7.5.3 Microchannel Reactors 349
7.5.4 MEMS-Based Reactors 350
7.6 Commercial Units 352
Acknowledgments 353
References 353
8. Hydrogen Membrane Technologies and Application in Fuel Processing 357
David Edlund
8.1 Introduction 357
8.2 Fundamentals of Membrane-Based Separations 358
8.3 Membrane Purification for Hydrogen Energy and Fuel Cell Applications
363
8.3.1 Product Hydrogen Purity 365
8.3.2 Process Scale 367
8.3.3 Energy Efficiency 368
8.4 Membrane Modules for Hydrogen Separation and Purification 369
8.5 Dense Metal Membranes 372
8.5.1 Metal Membrane Durability and Selectivity 375
8.6 Integration of Reforming and Membrane-Based Purification 378
8.7 Commercialization Activities 380
References 383
9. CO2-Selective Membranes for Hydrogen Fuel Processing 385
Jin Huang, Jian Zou, and W.S. Winston Ho
9.1 Introduction 385
9.2 Synthesis of Novel CO2-Selective Membranes 388
9.3 Model Description 389
9.4 Results and Discussion 391
9.4.1 Transport Properties of CO2-Selective Membrane 391
9.4.2 Modeling Predictions 400
9.5 Conclusions 408
Glossary 410
Acknowledgments 410
References 411
10. Pressure Swing Adsorption Technology for Hydrogen Production 414
Shivaji Sircar and Timothy C. Golden
10.1 Introduction 414
10.2 PSA Processes for Hydrogen Purification 418
10.2.1 PSA Processes for Production of Hydrogen Only 418
10.2.2 Process for Coproduction of Hydrogen and Carbon Dioxide 422
10.2.3 Processes for the Production of Ammonia Synthesis Gas 425
10.3 Adsorbents for Hydrogen PSA Processes 426
10.3.1 Adsorbents for Bulk CO2 Removal 427
10.3.2 Adsorbents for Dilute CO and N2 Removal 429
10.3.3 Adsorbents for Dilute CH4 Removal 432
10.3.4 Adsorbents for C1-C4 Hydrocarbon Removal 432
10.3.5 Other Adsorbent and Related Improvements in the H2 PSA 434
10.4 Future Trends for Hydrogen PSA 435
10.4.1 RPSA Cycles for Hydrogen Purification 436
10.4.2 Structured Adsorbents 438
10.4.3 Sorption-Enhanced Reaction Process (SERP) for H2 Production 439
10.5 PSA Process Reliability 441
10.6 Improved Hydrogen Recovery by PSA Processes 441
10.6.1 Integration with Additional PSA System 441
10.6.2 Hybrid PSA-Adsorbent Membrane System 442
10.7 Engineering Process Design 444
10.8 Summary 447
References 447
11. Integration of H2/Syngas Production Technologies with Future Energy
Systems 451
Wei Wei, Parag Kulkarni, and Ke Liu
11.1 Overview of Future Energy Systems and Challenges 451
11.2 Application of Reforming-Based Syngas Technology 454
11.2.1 NGCC Plants 454
11.2.2 Integration of H2/Syngas Production Technologies in NGCC Plants 455
11.3 Application of Gasification-Based Syngas Technology 465
11.3.1 IGCC Plant 468
11.4 Application of H2/Syngas Generation Technology to Liquid Fuels 477
11.4.1 Coal-to-H2 Process Description 479
11.4.2 Coal-to-Hydrogen System Performance and Economics 481
11.5 Summary 483
References 483
12. Coal and Syngas to Liquids 486
Ke Liu, Zhe Cui, Wei Chen, and Lingzhi Zhang
12.1 Overview and History of Coal to Liquids (CTL) 486
12.2 Direct Coal Liquefaction (DCTL) 488
12.2.1 DCTL Process 488
12.2.2 The Kohleoel Process 490
12.2.3 NEDOL (NEDO Liquefaction) Process 491
12.2.4 The HTI-Coal Process 494
12.2.5 Other Single-Stage Processes 495
12.3 Indirect Coal to Liquid (ICTL) 496
12.3.1 Introduction 496
12.3.2 FT Synthesis 498
12.4 Mobil Methanol to Gasoline (MTG) 510
12.5 SMDS 511
12.6 Hybrid Coal Liquefaction 512
12.7 Coal to Methanol 513
12.7.1 Introduction of Methanol Synthesis 513
12.7.2 Methanol Synthesis Catalysts 514
12.7.3 Methanol Synthesis Reactor Systems 514
12.7.4 Liquid-Phase Methanol (LPMEOH(TM)) Process 516
12.8 Coal to Dimethyl Ether (DME) 519
References 520
Index 522
Preface xiii
Contributors xv
1. Introduction to Hydrogen and Syngas Production and Purification
Technologies 1
Chunshan Song
1.1 Importance of Hydrogen and Syngas Production 1
1.2 Principles of Syngas and Hydrogen Production 4
1.3 Options for Hydrogen and Syngas Production 6
1.4 Hydrogen Energy and Fuel Cells 8
1.5 Fuel Processing for Fuel Cells 9
1.6 Sulfur Removal 10
1.7 CO2 Capture and Separation 11
1.8 Scope of the Book 11
Acknowledgments 12
References 12
2. Catalytic Steam Reforming Technology for the Production of Hydrogen and
Syngas 14
Velu Subramani, Pradeepkumar Sharma, Lingzhi Zhang, and Ke Liu
2.1 Introduction 14
2.2 Steam Reforming of Light Hydrocarbons 17
2.2.1 Steam Reforming of Natural Gas 17
2.2.2 Steam Reforming of C2-C4 Hydrocarbons 36
2.3 Steam Reforming of Liquid Hydrocarbons 46
2.3.1 Chemistry 46
2.3.2 Thermodynamics 47
2.3.3 Catalyst 52
2.3.4 Kinetics 58
2.3.5 Mechanism 61
2.3.6 Prereforming 61
2.4 Steam Reforming of Alcohols 65
2.4.1 Steam Reforming of Methanol (SRM) 65
2.4.2 Steam Reforming of Ethanol (SRE) 77
2.5 Carbon Formation and Catalyst Deactivation 106
2.6 Recent Developments in Reforming Technologies 109
2.6.1 Microreactor Reformer 109
2.6.2 Plate Reformer 110
2.6.3 Membrane Reformer 110
2.6.4 Plasma Reforming (PR) 112
2.7 Summary 112
References 112
3. Catalytic Partial Oxidation and Autothermal Reforming 127
Ke Liu, Gregg D. Deluga, Anders Bitsch-Larsen, Lanny D. Schmidt, and
Lingzhi Zhang
3.1 Introduction 127
3.2 Natural Gas Reforming Technologies: Fundamental Chemistry 130
3.2.1 ATR 130
3.2.2 Homogeneous POX 132
3.2.3 CPO 133
3.3 Development/Commercialization Status of ATR, POX, and CPO Reformers 136
3.4 CPO Catalysts 138
3.4.1 Nickel-Based CPO Catalysts 138
3.4.2 Precious Metal CPO Catalysts 142
3.5 CPO Mechanism and Kinetics 146
3.5.1 Ni Catalyst Mechanism and Reactor Kinetics Modeling 146
3.5.2 Precious Metal Catalyst Mechanism and Reactor Kinetics Modeling 147
3.6 Start-Up and Shutdown Procedure of CPO 149
3.7 CPO of Renewable Fuels 150
3.8 Summary 151
Acknowledgments 151
References 151
4. Coal Gasification 156
Ke Liu, Zhe Cui, and Thomas H. Fletcher
4.1 Introduction to Gasification 156
4.2 Coal Gasification History 158
4.3 Coal Gasification Chemistry 160
4.3.1 Pyrolysis Process 161
4.3.2 Combustion of Volatiles 163
4.3.3 Char Gasification Reactions 164
4.3.4 Ash-Slag Chemistry 166
4.4 Gasification Thermodynamics 169
4.5 Gasification Kinetics 173
4.5.1 Reaction Mechanisms and the Kinetics of the Boudouard Reaction 174
4.5.2 Reaction Mechanisms and the Kinetics of the Water-Gas Reaction 175
4.6 Classification of Different Gasifiers 176
4.7 GE (Texaco) Gasification Technology with CWS Feeding 178
4.7.1 Introduction to GE Gasification Technology 178
4.7.2 GE Gasification Process 179
4.7.3 Coal Requirements of the GE Gasifier 184
4.7.4 Summary of GE Slurry Feeding Gasification Technology 186
4.8 Shell Gasification Technology with Dry Feeding 187
4.8.1 Introduction to Dry-Feeding Coal Gasification 187
4.8.2 Shell Gasification Process 189
4.8.3 Coal Requirements of Shell Gasification Process 193
4.8.4 Summary of Dry-Feeding Shell Gasifier 194
4.9 Other Gasification Technologies 195
4.9.1 GSP Gasification Technology 195
4.9.2 East China University of Science and Technology (ECUST) Gasifier 198
4.9.3 TPRI Gasifier 199
4.9.4 Fluidized-Bed Gasifiers 199
4.9.5 ConocoPhillips Gasifier 202
4.9.6 Moving-Bed and Fixed-Bed Gasifiers: Lurgi's Gasification Technology
203
4.9.7 Summary of Different Gasification Technologies 205
4.10 Challenges in Gasification Technology: Some Examples 206
4.10.1 High AFT Coals 206
4.10.2 Increasing the Coal Concentration in the CWS 207
4.10.3 Improved Performance and Life of Gasifier Nozzles 208
4.10.4 Gasifier Refractory Brick Life 208
4.10.5 Gasifier Scale-Up 209
4.11 Syngas Cleanup 210
4.12 Integration of Coal Gasification with Coal Polygeneration Systems 215
References 216
5. Desulfurization Technologies 219
Chunshan Song and Xiaoliang Ma
5.1 Challenges in Deep Desulfurization for Hydrocarbon Fuel Processing and
Fuel Cell Applications 219
5.2 HDS Technology 225
5.2.1 Natural Gas 225
5.2.2 Gasoline 226
5.2.3 Diesel 233
5.3 Adsorptive Desulfurization 243
5.3.1 Natural Gas 244
5.3.2 Gasoline 246
5.3.3 Jet Fuel 256
5.3.4 Diesel 258
5.4 Post-Reformer Desulfurization: H2S Sorption 264
5.4.1 H2S Sorbents 265
5.4.2 H2S Adsorption Thermodynamics 268
5.5 Desulfurization of Coal Gasification Gas 272
5.5.1 Absorption by Solvents 275
5.5.2 Hot and Warm Gas Cleanup 291
5.6 ODS 293
5.6.1 Natural Gas 293
5.6.2 Liquid Hydrocarbon Fuels 295
5.7 Summary 298
References 300
6. Water-Gas Shift Technologies 311
Alex Platon and Yong Wang
6.1 Introduction 311
6.2 Thermodynamic Considerations 312
6.3 Industrial Processes and Catalysts 313
6.3.1 Ferrochrome Catalyst for HTS Reaction 313
6.3.2 CuZn Catalysts for LTS Reaction 314
6.3.3 CoMo Catalyst for LTS Reaction 314
6.4 Reaction Mechanism and Kinetics 315
6.4.1 Ferrochrome Catalyst 315
6.4.2 CuZn-Based Catalyst 317
6.4.3 CoMo Catalyst 317
6.5 Catalyst Improvements and New Classes of Catalysts 318
6.5.1 Improvements to the Cu- and Fe-Based Catalysts 318
6.5.2 New Reaction Technologies 319
6.5.3 New Classes of Catalysts 321
References 326
7. Removal of Trace Contaminants from Fuel Processing Reformate:
Preferential Oxidation (Prox) 329
Marco J. Castaldi
7.1 Introduction 329
7.2 Reactions of Prox 331
7.3 General Prox Reactor Performance 333
7.3.1 Multiple Steady-State Operation 337
7.3.2 Water-Oxygen Synergy 339
7.4 Catalysts Formulations 342
7.5 Reactor Geometries 344
7.5.1 Monolithic Reactors 345
7.5.2 SCT Reactors 346
7.5.3 Microchannel Reactors 349
7.5.4 MEMS-Based Reactors 350
7.6 Commercial Units 352
Acknowledgments 353
References 353
8. Hydrogen Membrane Technologies and Application in Fuel Processing 357
David Edlund
8.1 Introduction 357
8.2 Fundamentals of Membrane-Based Separations 358
8.3 Membrane Purification for Hydrogen Energy and Fuel Cell Applications
363
8.3.1 Product Hydrogen Purity 365
8.3.2 Process Scale 367
8.3.3 Energy Efficiency 368
8.4 Membrane Modules for Hydrogen Separation and Purification 369
8.5 Dense Metal Membranes 372
8.5.1 Metal Membrane Durability and Selectivity 375
8.6 Integration of Reforming and Membrane-Based Purification 378
8.7 Commercialization Activities 380
References 383
9. CO2-Selective Membranes for Hydrogen Fuel Processing 385
Jin Huang, Jian Zou, and W.S. Winston Ho
9.1 Introduction 385
9.2 Synthesis of Novel CO2-Selective Membranes 388
9.3 Model Description 389
9.4 Results and Discussion 391
9.4.1 Transport Properties of CO2-Selective Membrane 391
9.4.2 Modeling Predictions 400
9.5 Conclusions 408
Glossary 410
Acknowledgments 410
References 411
10. Pressure Swing Adsorption Technology for Hydrogen Production 414
Shivaji Sircar and Timothy C. Golden
10.1 Introduction 414
10.2 PSA Processes for Hydrogen Purification 418
10.2.1 PSA Processes for Production of Hydrogen Only 418
10.2.2 Process for Coproduction of Hydrogen and Carbon Dioxide 422
10.2.3 Processes for the Production of Ammonia Synthesis Gas 425
10.3 Adsorbents for Hydrogen PSA Processes 426
10.3.1 Adsorbents for Bulk CO2 Removal 427
10.3.2 Adsorbents for Dilute CO and N2 Removal 429
10.3.3 Adsorbents for Dilute CH4 Removal 432
10.3.4 Adsorbents for C1-C4 Hydrocarbon Removal 432
10.3.5 Other Adsorbent and Related Improvements in the H2 PSA 434
10.4 Future Trends for Hydrogen PSA 435
10.4.1 RPSA Cycles for Hydrogen Purification 436
10.4.2 Structured Adsorbents 438
10.4.3 Sorption-Enhanced Reaction Process (SERP) for H2 Production 439
10.5 PSA Process Reliability 441
10.6 Improved Hydrogen Recovery by PSA Processes 441
10.6.1 Integration with Additional PSA System 441
10.6.2 Hybrid PSA-Adsorbent Membrane System 442
10.7 Engineering Process Design 444
10.8 Summary 447
References 447
11. Integration of H2/Syngas Production Technologies with Future Energy
Systems 451
Wei Wei, Parag Kulkarni, and Ke Liu
11.1 Overview of Future Energy Systems and Challenges 451
11.2 Application of Reforming-Based Syngas Technology 454
11.2.1 NGCC Plants 454
11.2.2 Integration of H2/Syngas Production Technologies in NGCC Plants 455
11.3 Application of Gasification-Based Syngas Technology 465
11.3.1 IGCC Plant 468
11.4 Application of H2/Syngas Generation Technology to Liquid Fuels 477
11.4.1 Coal-to-H2 Process Description 479
11.4.2 Coal-to-Hydrogen System Performance and Economics 481
11.5 Summary 483
References 483
12. Coal and Syngas to Liquids 486
Ke Liu, Zhe Cui, Wei Chen, and Lingzhi Zhang
12.1 Overview and History of Coal to Liquids (CTL) 486
12.2 Direct Coal Liquefaction (DCTL) 488
12.2.1 DCTL Process 488
12.2.2 The Kohleoel Process 490
12.2.3 NEDOL (NEDO Liquefaction) Process 491
12.2.4 The HTI-Coal Process 494
12.2.5 Other Single-Stage Processes 495
12.3 Indirect Coal to Liquid (ICTL) 496
12.3.1 Introduction 496
12.3.2 FT Synthesis 498
12.4 Mobil Methanol to Gasoline (MTG) 510
12.5 SMDS 511
12.6 Hybrid Coal Liquefaction 512
12.7 Coal to Methanol 513
12.7.1 Introduction of Methanol Synthesis 513
12.7.2 Methanol Synthesis Catalysts 514
12.7.3 Methanol Synthesis Reactor Systems 514
12.7.4 Liquid-Phase Methanol (LPMEOH(TM)) Process 516
12.8 Coal to Dimethyl Ether (DME) 519
References 520
Index 522
Contributors xv
1. Introduction to Hydrogen and Syngas Production and Purification
Technologies 1
Chunshan Song
1.1 Importance of Hydrogen and Syngas Production 1
1.2 Principles of Syngas and Hydrogen Production 4
1.3 Options for Hydrogen and Syngas Production 6
1.4 Hydrogen Energy and Fuel Cells 8
1.5 Fuel Processing for Fuel Cells 9
1.6 Sulfur Removal 10
1.7 CO2 Capture and Separation 11
1.8 Scope of the Book 11
Acknowledgments 12
References 12
2. Catalytic Steam Reforming Technology for the Production of Hydrogen and
Syngas 14
Velu Subramani, Pradeepkumar Sharma, Lingzhi Zhang, and Ke Liu
2.1 Introduction 14
2.2 Steam Reforming of Light Hydrocarbons 17
2.2.1 Steam Reforming of Natural Gas 17
2.2.2 Steam Reforming of C2-C4 Hydrocarbons 36
2.3 Steam Reforming of Liquid Hydrocarbons 46
2.3.1 Chemistry 46
2.3.2 Thermodynamics 47
2.3.3 Catalyst 52
2.3.4 Kinetics 58
2.3.5 Mechanism 61
2.3.6 Prereforming 61
2.4 Steam Reforming of Alcohols 65
2.4.1 Steam Reforming of Methanol (SRM) 65
2.4.2 Steam Reforming of Ethanol (SRE) 77
2.5 Carbon Formation and Catalyst Deactivation 106
2.6 Recent Developments in Reforming Technologies 109
2.6.1 Microreactor Reformer 109
2.6.2 Plate Reformer 110
2.6.3 Membrane Reformer 110
2.6.4 Plasma Reforming (PR) 112
2.7 Summary 112
References 112
3. Catalytic Partial Oxidation and Autothermal Reforming 127
Ke Liu, Gregg D. Deluga, Anders Bitsch-Larsen, Lanny D. Schmidt, and
Lingzhi Zhang
3.1 Introduction 127
3.2 Natural Gas Reforming Technologies: Fundamental Chemistry 130
3.2.1 ATR 130
3.2.2 Homogeneous POX 132
3.2.3 CPO 133
3.3 Development/Commercialization Status of ATR, POX, and CPO Reformers 136
3.4 CPO Catalysts 138
3.4.1 Nickel-Based CPO Catalysts 138
3.4.2 Precious Metal CPO Catalysts 142
3.5 CPO Mechanism and Kinetics 146
3.5.1 Ni Catalyst Mechanism and Reactor Kinetics Modeling 146
3.5.2 Precious Metal Catalyst Mechanism and Reactor Kinetics Modeling 147
3.6 Start-Up and Shutdown Procedure of CPO 149
3.7 CPO of Renewable Fuels 150
3.8 Summary 151
Acknowledgments 151
References 151
4. Coal Gasification 156
Ke Liu, Zhe Cui, and Thomas H. Fletcher
4.1 Introduction to Gasification 156
4.2 Coal Gasification History 158
4.3 Coal Gasification Chemistry 160
4.3.1 Pyrolysis Process 161
4.3.2 Combustion of Volatiles 163
4.3.3 Char Gasification Reactions 164
4.3.4 Ash-Slag Chemistry 166
4.4 Gasification Thermodynamics 169
4.5 Gasification Kinetics 173
4.5.1 Reaction Mechanisms and the Kinetics of the Boudouard Reaction 174
4.5.2 Reaction Mechanisms and the Kinetics of the Water-Gas Reaction 175
4.6 Classification of Different Gasifiers 176
4.7 GE (Texaco) Gasification Technology with CWS Feeding 178
4.7.1 Introduction to GE Gasification Technology 178
4.7.2 GE Gasification Process 179
4.7.3 Coal Requirements of the GE Gasifier 184
4.7.4 Summary of GE Slurry Feeding Gasification Technology 186
4.8 Shell Gasification Technology with Dry Feeding 187
4.8.1 Introduction to Dry-Feeding Coal Gasification 187
4.8.2 Shell Gasification Process 189
4.8.3 Coal Requirements of Shell Gasification Process 193
4.8.4 Summary of Dry-Feeding Shell Gasifier 194
4.9 Other Gasification Technologies 195
4.9.1 GSP Gasification Technology 195
4.9.2 East China University of Science and Technology (ECUST) Gasifier 198
4.9.3 TPRI Gasifier 199
4.9.4 Fluidized-Bed Gasifiers 199
4.9.5 ConocoPhillips Gasifier 202
4.9.6 Moving-Bed and Fixed-Bed Gasifiers: Lurgi's Gasification Technology
203
4.9.7 Summary of Different Gasification Technologies 205
4.10 Challenges in Gasification Technology: Some Examples 206
4.10.1 High AFT Coals 206
4.10.2 Increasing the Coal Concentration in the CWS 207
4.10.3 Improved Performance and Life of Gasifier Nozzles 208
4.10.4 Gasifier Refractory Brick Life 208
4.10.5 Gasifier Scale-Up 209
4.11 Syngas Cleanup 210
4.12 Integration of Coal Gasification with Coal Polygeneration Systems 215
References 216
5. Desulfurization Technologies 219
Chunshan Song and Xiaoliang Ma
5.1 Challenges in Deep Desulfurization for Hydrocarbon Fuel Processing and
Fuel Cell Applications 219
5.2 HDS Technology 225
5.2.1 Natural Gas 225
5.2.2 Gasoline 226
5.2.3 Diesel 233
5.3 Adsorptive Desulfurization 243
5.3.1 Natural Gas 244
5.3.2 Gasoline 246
5.3.3 Jet Fuel 256
5.3.4 Diesel 258
5.4 Post-Reformer Desulfurization: H2S Sorption 264
5.4.1 H2S Sorbents 265
5.4.2 H2S Adsorption Thermodynamics 268
5.5 Desulfurization of Coal Gasification Gas 272
5.5.1 Absorption by Solvents 275
5.5.2 Hot and Warm Gas Cleanup 291
5.6 ODS 293
5.6.1 Natural Gas 293
5.6.2 Liquid Hydrocarbon Fuels 295
5.7 Summary 298
References 300
6. Water-Gas Shift Technologies 311
Alex Platon and Yong Wang
6.1 Introduction 311
6.2 Thermodynamic Considerations 312
6.3 Industrial Processes and Catalysts 313
6.3.1 Ferrochrome Catalyst for HTS Reaction 313
6.3.2 CuZn Catalysts for LTS Reaction 314
6.3.3 CoMo Catalyst for LTS Reaction 314
6.4 Reaction Mechanism and Kinetics 315
6.4.1 Ferrochrome Catalyst 315
6.4.2 CuZn-Based Catalyst 317
6.4.3 CoMo Catalyst 317
6.5 Catalyst Improvements and New Classes of Catalysts 318
6.5.1 Improvements to the Cu- and Fe-Based Catalysts 318
6.5.2 New Reaction Technologies 319
6.5.3 New Classes of Catalysts 321
References 326
7. Removal of Trace Contaminants from Fuel Processing Reformate:
Preferential Oxidation (Prox) 329
Marco J. Castaldi
7.1 Introduction 329
7.2 Reactions of Prox 331
7.3 General Prox Reactor Performance 333
7.3.1 Multiple Steady-State Operation 337
7.3.2 Water-Oxygen Synergy 339
7.4 Catalysts Formulations 342
7.5 Reactor Geometries 344
7.5.1 Monolithic Reactors 345
7.5.2 SCT Reactors 346
7.5.3 Microchannel Reactors 349
7.5.4 MEMS-Based Reactors 350
7.6 Commercial Units 352
Acknowledgments 353
References 353
8. Hydrogen Membrane Technologies and Application in Fuel Processing 357
David Edlund
8.1 Introduction 357
8.2 Fundamentals of Membrane-Based Separations 358
8.3 Membrane Purification for Hydrogen Energy and Fuel Cell Applications
363
8.3.1 Product Hydrogen Purity 365
8.3.2 Process Scale 367
8.3.3 Energy Efficiency 368
8.4 Membrane Modules for Hydrogen Separation and Purification 369
8.5 Dense Metal Membranes 372
8.5.1 Metal Membrane Durability and Selectivity 375
8.6 Integration of Reforming and Membrane-Based Purification 378
8.7 Commercialization Activities 380
References 383
9. CO2-Selective Membranes for Hydrogen Fuel Processing 385
Jin Huang, Jian Zou, and W.S. Winston Ho
9.1 Introduction 385
9.2 Synthesis of Novel CO2-Selective Membranes 388
9.3 Model Description 389
9.4 Results and Discussion 391
9.4.1 Transport Properties of CO2-Selective Membrane 391
9.4.2 Modeling Predictions 400
9.5 Conclusions 408
Glossary 410
Acknowledgments 410
References 411
10. Pressure Swing Adsorption Technology for Hydrogen Production 414
Shivaji Sircar and Timothy C. Golden
10.1 Introduction 414
10.2 PSA Processes for Hydrogen Purification 418
10.2.1 PSA Processes for Production of Hydrogen Only 418
10.2.2 Process for Coproduction of Hydrogen and Carbon Dioxide 422
10.2.3 Processes for the Production of Ammonia Synthesis Gas 425
10.3 Adsorbents for Hydrogen PSA Processes 426
10.3.1 Adsorbents for Bulk CO2 Removal 427
10.3.2 Adsorbents for Dilute CO and N2 Removal 429
10.3.3 Adsorbents for Dilute CH4 Removal 432
10.3.4 Adsorbents for C1-C4 Hydrocarbon Removal 432
10.3.5 Other Adsorbent and Related Improvements in the H2 PSA 434
10.4 Future Trends for Hydrogen PSA 435
10.4.1 RPSA Cycles for Hydrogen Purification 436
10.4.2 Structured Adsorbents 438
10.4.3 Sorption-Enhanced Reaction Process (SERP) for H2 Production 439
10.5 PSA Process Reliability 441
10.6 Improved Hydrogen Recovery by PSA Processes 441
10.6.1 Integration with Additional PSA System 441
10.6.2 Hybrid PSA-Adsorbent Membrane System 442
10.7 Engineering Process Design 444
10.8 Summary 447
References 447
11. Integration of H2/Syngas Production Technologies with Future Energy
Systems 451
Wei Wei, Parag Kulkarni, and Ke Liu
11.1 Overview of Future Energy Systems and Challenges 451
11.2 Application of Reforming-Based Syngas Technology 454
11.2.1 NGCC Plants 454
11.2.2 Integration of H2/Syngas Production Technologies in NGCC Plants 455
11.3 Application of Gasification-Based Syngas Technology 465
11.3.1 IGCC Plant 468
11.4 Application of H2/Syngas Generation Technology to Liquid Fuels 477
11.4.1 Coal-to-H2 Process Description 479
11.4.2 Coal-to-Hydrogen System Performance and Economics 481
11.5 Summary 483
References 483
12. Coal and Syngas to Liquids 486
Ke Liu, Zhe Cui, Wei Chen, and Lingzhi Zhang
12.1 Overview and History of Coal to Liquids (CTL) 486
12.2 Direct Coal Liquefaction (DCTL) 488
12.2.1 DCTL Process 488
12.2.2 The Kohleoel Process 490
12.2.3 NEDOL (NEDO Liquefaction) Process 491
12.2.4 The HTI-Coal Process 494
12.2.5 Other Single-Stage Processes 495
12.3 Indirect Coal to Liquid (ICTL) 496
12.3.1 Introduction 496
12.3.2 FT Synthesis 498
12.4 Mobil Methanol to Gasoline (MTG) 510
12.5 SMDS 511
12.6 Hybrid Coal Liquefaction 512
12.7 Coal to Methanol 513
12.7.1 Introduction of Methanol Synthesis 513
12.7.2 Methanol Synthesis Catalysts 514
12.7.3 Methanol Synthesis Reactor Systems 514
12.7.4 Liquid-Phase Methanol (LPMEOH(TM)) Process 516
12.8 Coal to Dimethyl Ether (DME) 519
References 520
Index 522