Hydrogen Exchange Mass Spectrometry of Proteins (eBook, ePUB)
Fundamentals, Methods, and Applications
Redaktion: Weis, David D.
Alle Infos zum eBook verschenken
Hydrogen Exchange Mass Spectrometry of Proteins (eBook, ePUB)
Fundamentals, Methods, and Applications
Redaktion: Weis, David D.
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hydrogen exchange mass spectrometry is widely recognized for its ability to probe the structure and dynamics of proteins. The application of this technique is becoming widespread due to its versatility for providing structural information about challenging biological macromolecules such as antibodies, flexible proteins and glycoproteins. Although the technique has been around for 25 years, this is the first definitive book devoted entirely to the topic. Hydrogen Exchange Mass Spectrometry of Proteins: Fundamentals, Methods and Applications brings into one comprehensive volume the theory,…mehr
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 31.42MB
- Mass Spectrometry and Stable Isotopes in Nutritional and Pediatric Research (eBook, ePUB)141,99 €
- Robert K. BoydTrace Quantitative Analysis by Mass Spectrometry (eBook, ePUB)102,99 €
- John R. GriffithsAnalysis of Protein Post-Translational Modifications by Mass Spectrometry (eBook, ePUB)114,99 €
- Electrospray and MALDI Mass Spectrometry (eBook, ePUB)160,99 €
- Despina TsipiMass Spectrometry for the Analysis of Pesticide Residues and their Metabolites (eBook, ePUB)109,99 €
- Protein and Peptide Mass Spectrometry in Drug Discovery (eBook, ePUB)137,99 €
- Protein Carbonylation (eBook, ePUB)153,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 376
- Erscheinungstermin: 11. Januar 2016
- Englisch
- ISBN-13: 9781118703694
- Artikelnr.: 44503801
- Verlag: John Wiley & Sons
- Seitenzahl: 376
- Erscheinungstermin: 11. Januar 2016
- Englisch
- ISBN-13: 9781118703694
- Artikelnr.: 44503801
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Activation by Small Molecules 215 12.2.3 Targeting Intrinsically Disordered Proteins to Aid Drug Discovery 215 12.3 HX in Drug Discovery Requires Automation of the HX Platform 216 12.3.1 The Case for an Automated HX-MS Workflow 216 12.3.2 Decoupled and Real-Time Automation of the HX-MS Experiment 216 12.4 The Need for Statistical Analysis of Differential HX Data 218 12.5 Challenges and Future Directions 219 References 221 13 The Role of Hydrogen Exchange Mass Spectrometry in Assessing the Consistency and Comparability of the Higher-Order Structure of Protein Biopharmaceuticals 225 Damian Houde and Steven A. Berkowitz 13.1 Introduction 225 13.2 Biopharmaceutical Comparability 226 13.3 Internal Comparability (Innovator) versus External Comparability (Biosimilar) 227 13.4 General Challenges in Assessing the Comparability of Biopharmaceuticals in Terms of Their Higher-Order Structure 229 13.5 Higher-Order Structure and HX-MS in the Biopharmaceutical Industry 229 13.6 Challenges and Approaches of Handling Local HX-MS Data 232 13.6.1 Relative Fractional Exchange Comparability Plot 235 13.6.2 Difference Plot 237 13.7 When Is a Difference Real? 238 13.7.1 Criteria for Assessing the Presence of a Difference in HX-MS Comparability Experiments 239 13.8 An Example of HX-MS Data Processing and Display 241 13.9 Using HX-MS to Assess Structure-Function Comparability 242 13.10 The Role of HX-MS in Biopharmaceutical Comparability Studies 242 References 244 14 Utility of Hydrogen Exchange Mass Spectrometry in Epitope Mapping 247 Richard Y.-C. Huang, Adrienne A. Tymiak, and Guodong Chen 14.1 Introduction 247 14.1.1 Rationale for Epitope Mapping 248 14.1.2 Methods for Epitope Mapping 248 14.2 HX-MS Methodology in Epitope Mapping 251 14.2.1 HX-MS Experimental Designs 251 14.2.2 HX-MS Data Interpretation 252 14.2.3 Complementary Strategies 253 14.3 Epitope Mapping Case Studies 254 14.3.1 Protein-Protein Interactions 255 14.3.2 Protein-Peptide Interactions 258 14.4 Conclusions 258 References 259 15 Hydrogen Exchange Mass Spectrometry for Proteins Adsorbed to Solid Surfaces, in Frozen Solutions, and in Amorphous Solids 265 Balakrishnan S. Moorthy, Bo Xie, Jainik P. Panchal, and Elizabeth M. Topp 15.1 Introduction 265 15.2 HX-MS for Proteins Adsorbed to Solid Surfaces 266 15.2.1 Protein Structure and Dynamics at the Solid-Liquid Interface 266 15.2.2 Methods to Study Proteins Adsorbed at the Solid-Liquid Interface 266 15.2.3 Amide HX-MS for Surface-Adsorbed Proteins 267 15.3 HX-MS for Proteins in Frozen Solutions 269 15.3.1 Protein Structure and Dynamics in Frozen Solutions 269 15.3.2 Methods to Study Proteins in Frozen Solutions 269 15.3.3 Amide HX-MS of Proteins in Frozen Solutions 270 15.4 HX-MS for Proteins in Lyophilized Solids 270 15.4.1 Lyophilization and Stability of Therapeutic Proteins 270 15.4.2 Methods to Study Proteins in Lyophilized Solids 271 15.4.3 Solid-State Amide HX-MS 271 15.4.4 Data Analysis and Interpretation 272 15.5 Summary 274 References 274 16 Hydrogen Exchange Mass Spectrometry of Membrane Proteins 279 Eric Forest and Martial Rey 16.1 Introduction 279 16.2 Interaction of Peptides and Proteins with Unilamellar Vesicles Mimicking the Cell Membrane 280 16.2.1 Peptide-Vesicle Interactions 280 16.2.2 Myoglobin-Vesicle Interaction 281 16.2.3 Phospholipase-Vesicle Interaction 281 16.2.4 Diphtheria Toxin-Vesicle Interaction 284 16.3 Integral Membrane Proteins 285 16.3.1 Bovine ADP/ATP Mitochondrial Carrier (bANC1p) 287 16.3.2 ß2-Adrenergic G-Protein-Coupled Receptor (ß2AR) 287 16.3.3 Additional Uses of DDM with Membrane Proteins 290 16.4 Proteins Inserted in Lipid Nanodiscs 291 16.5 Membrane Proteins in Organello 291 16.6 Conclusion 292 References 293 17 Analysis of Disordered Proteins by Hydrogen Exchange Mass Spectrometry 295 David D. Weis 17.1 Intrinsically Disordered Proteins 295 17.1.1 Disorder Prediction 296 17.1.2 Coupled Binding and Folding by Disordered Proteins 298 17.2 Methods to Characterize Disordered Proteins 299 17.3 Applying Hydrogen Exchange Mass Spectrometry to Disordered Proteins 299 17.3.1 Kinetics of Hydrogen Exchange in Disordered Proteins 299 17.3.2 Direct Millisecond Hydrogen Exchange 304 17.3.3 Achieving Millisecond Hydrogen Exchange by Decreasing pH 304 17.3.4 Proteolysis and Peptide Mapping of IDPs 305 17.4 Identifying Disordered Regions with Hydrogen Exchange Mass Spectrometry 306 17.4.1 Apolipoprotein A-I 306 17.4.2 Peroxisome Proliferator-Activated Receptor
Coactivator-1
307 17.4.3 Methyl CpG-Binding Protein 2 307 17.4.4 Inhibitor of Nuclear Factor
B 307 17.4.5
-Synuclein 307 17.5 Mechanism of Activation of Calcineurin by Calmodulin 308 17.6 CREB-Binding Protein and Activator of Thyroid and Retinoic Acid Receptor: Disordered Proteins that Fold upon Binding 309 17.6.1 Kinetic Analysis of Peptide-Averaged Hydrogen Exchange 310 17.6.2 Hydrogen Exchange in Molten Globular CBP 312 17.6.3 Detection of Residual Helicity in ACTR with Millisecond Hydrogen Exchange 312 17.7 Future Perspectives 316 Acknowledgments 316 References 318 18 Hydrogen Exchange Mass Spectrometry as an Emerging Analytical Tool for Stabilization and Formulation Development of Therapeutic Monoclonal Antibodies 323 Ranajoy Majumdar, C. Russell Middaugh, David D. Weis, and David B. Volkin 18.1 Introduction 323 18.2 Application of the HX-MS Method to mAbs 325 18.3 HX-MS Data Analysis 326 18.4 Case Studies of the Application of HX-MS to Formulation Development of mAbs 326 18.4.1 Impact of Chemical Modifications on mAb Local Dynamics 328 18.4.2 Impact of Environmental Stresses on mAb Local Dynamics 329 18.4.3 Impact of Formulation Additives on mAb Local Dynamics, Conformational Stability, and Aggregation 331 18.5 Identification of Aggregation Hotspots in mAbs Using HX-MS 334 18.6 Challenges and Opportunities for the HX-MS Technique in mAb Formulation Development 336 18.6.1 Analytical Technology Challenges 336 18.6.2 mAb Formulation Development Challenges 337 18.7 Conclusions 338 Acknowledgments 339 References 339 Index 343
Activation by Small Molecules 215 12.2.3 Targeting Intrinsically Disordered Proteins to Aid Drug Discovery 215 12.3 HX in Drug Discovery Requires Automation of the HX Platform 216 12.3.1 The Case for an Automated HX-MS Workflow 216 12.3.2 Decoupled and Real-Time Automation of the HX-MS Experiment 216 12.4 The Need for Statistical Analysis of Differential HX Data 218 12.5 Challenges and Future Directions 219 References 221 13 The Role of Hydrogen Exchange Mass Spectrometry in Assessing the Consistency and Comparability of the Higher-Order Structure of Protein Biopharmaceuticals 225 Damian Houde and Steven A. Berkowitz 13.1 Introduction 225 13.2 Biopharmaceutical Comparability 226 13.3 Internal Comparability (Innovator) versus External Comparability (Biosimilar) 227 13.4 General Challenges in Assessing the Comparability of Biopharmaceuticals in Terms of Their Higher-Order Structure 229 13.5 Higher-Order Structure and HX-MS in the Biopharmaceutical Industry 229 13.6 Challenges and Approaches of Handling Local HX-MS Data 232 13.6.1 Relative Fractional Exchange Comparability Plot 235 13.6.2 Difference Plot 237 13.7 When Is a Difference Real? 238 13.7.1 Criteria for Assessing the Presence of a Difference in HX-MS Comparability Experiments 239 13.8 An Example of HX-MS Data Processing and Display 241 13.9 Using HX-MS to Assess Structure-Function Comparability 242 13.10 The Role of HX-MS in Biopharmaceutical Comparability Studies 242 References 244 14 Utility of Hydrogen Exchange Mass Spectrometry in Epitope Mapping 247 Richard Y.-C. Huang, Adrienne A. Tymiak, and Guodong Chen 14.1 Introduction 247 14.1.1 Rationale for Epitope Mapping 248 14.1.2 Methods for Epitope Mapping 248 14.2 HX-MS Methodology in Epitope Mapping 251 14.2.1 HX-MS Experimental Designs 251 14.2.2 HX-MS Data Interpretation 252 14.2.3 Complementary Strategies 253 14.3 Epitope Mapping Case Studies 254 14.3.1 Protein-Protein Interactions 255 14.3.2 Protein-Peptide Interactions 258 14.4 Conclusions 258 References 259 15 Hydrogen Exchange Mass Spectrometry for Proteins Adsorbed to Solid Surfaces, in Frozen Solutions, and in Amorphous Solids 265 Balakrishnan S. Moorthy, Bo Xie, Jainik P. Panchal, and Elizabeth M. Topp 15.1 Introduction 265 15.2 HX-MS for Proteins Adsorbed to Solid Surfaces 266 15.2.1 Protein Structure and Dynamics at the Solid-Liquid Interface 266 15.2.2 Methods to Study Proteins Adsorbed at the Solid-Liquid Interface 266 15.2.3 Amide HX-MS for Surface-Adsorbed Proteins 267 15.3 HX-MS for Proteins in Frozen Solutions 269 15.3.1 Protein Structure and Dynamics in Frozen Solutions 269 15.3.2 Methods to Study Proteins in Frozen Solutions 269 15.3.3 Amide HX-MS of Proteins in Frozen Solutions 270 15.4 HX-MS for Proteins in Lyophilized Solids 270 15.4.1 Lyophilization and Stability of Therapeutic Proteins 270 15.4.2 Methods to Study Proteins in Lyophilized Solids 271 15.4.3 Solid-State Amide HX-MS 271 15.4.4 Data Analysis and Interpretation 272 15.5 Summary 274 References 274 16 Hydrogen Exchange Mass Spectrometry of Membrane Proteins 279 Eric Forest and Martial Rey 16.1 Introduction 279 16.2 Interaction of Peptides and Proteins with Unilamellar Vesicles Mimicking the Cell Membrane 280 16.2.1 Peptide-Vesicle Interactions 280 16.2.2 Myoglobin-Vesicle Interaction 281 16.2.3 Phospholipase-Vesicle Interaction 281 16.2.4 Diphtheria Toxin-Vesicle Interaction 284 16.3 Integral Membrane Proteins 285 16.3.1 Bovine ADP/ATP Mitochondrial Carrier (bANC1p) 287 16.3.2 ß2-Adrenergic G-Protein-Coupled Receptor (ß2AR) 287 16.3.3 Additional Uses of DDM with Membrane Proteins 290 16.4 Proteins Inserted in Lipid Nanodiscs 291 16.5 Membrane Proteins in Organello 291 16.6 Conclusion 292 References 293 17 Analysis of Disordered Proteins by Hydrogen Exchange Mass Spectrometry 295 David D. Weis 17.1 Intrinsically Disordered Proteins 295 17.1.1 Disorder Prediction 296 17.1.2 Coupled Binding and Folding by Disordered Proteins 298 17.2 Methods to Characterize Disordered Proteins 299 17.3 Applying Hydrogen Exchange Mass Spectrometry to Disordered Proteins 299 17.3.1 Kinetics of Hydrogen Exchange in Disordered Proteins 299 17.3.2 Direct Millisecond Hydrogen Exchange 304 17.3.3 Achieving Millisecond Hydrogen Exchange by Decreasing pH 304 17.3.4 Proteolysis and Peptide Mapping of IDPs 305 17.4 Identifying Disordered Regions with Hydrogen Exchange Mass Spectrometry 306 17.4.1 Apolipoprotein A-I 306 17.4.2 Peroxisome Proliferator-Activated Receptor
Coactivator-1
307 17.4.3 Methyl CpG-Binding Protein 2 307 17.4.4 Inhibitor of Nuclear Factor
B 307 17.4.5
-Synuclein 307 17.5 Mechanism of Activation of Calcineurin by Calmodulin 308 17.6 CREB-Binding Protein and Activator of Thyroid and Retinoic Acid Receptor: Disordered Proteins that Fold upon Binding 309 17.6.1 Kinetic Analysis of Peptide-Averaged Hydrogen Exchange 310 17.6.2 Hydrogen Exchange in Molten Globular CBP 312 17.6.3 Detection of Residual Helicity in ACTR with Millisecond Hydrogen Exchange 312 17.7 Future Perspectives 316 Acknowledgments 316 References 318 18 Hydrogen Exchange Mass Spectrometry as an Emerging Analytical Tool for Stabilization and Formulation Development of Therapeutic Monoclonal Antibodies 323 Ranajoy Majumdar, C. Russell Middaugh, David D. Weis, and David B. Volkin 18.1 Introduction 323 18.2 Application of the HX-MS Method to mAbs 325 18.3 HX-MS Data Analysis 326 18.4 Case Studies of the Application of HX-MS to Formulation Development of mAbs 326 18.4.1 Impact of Chemical Modifications on mAb Local Dynamics 328 18.4.2 Impact of Environmental Stresses on mAb Local Dynamics 329 18.4.3 Impact of Formulation Additives on mAb Local Dynamics, Conformational Stability, and Aggregation 331 18.5 Identification of Aggregation Hotspots in mAbs Using HX-MS 334 18.6 Challenges and Opportunities for the HX-MS Technique in mAb Formulation Development 336 18.6.1 Analytical Technology Challenges 336 18.6.2 mAb Formulation Development Challenges 337 18.7 Conclusions 338 Acknowledgments 339 References 339 Index 343