Hyperspectral Data Exploitation (eBook, PDF)
Theory and Applications
Redaktion: Chang, Chein-I
163,99 €
163,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
163,99 €
Als Download kaufen
163,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
163,99 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
0 °P sammeln
Hyperspectral Data Exploitation (eBook, PDF)
Theory and Applications
Redaktion: Chang, Chein-I
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.

Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Authored by a panel of experts in the field, this book focuses on hyperspectral image analysis, systems, and applications. With discussion of application-based projects and case studies, this professional reference will bring you up-to-date on this pervasive technology, wether you are working in the military and defense fields, or in remote sensing technology, geoscience, or agriculture.
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 8.78MB
Andere Kunden interessierten sich auch für
- Chein-I ChangHyperspectral Data Processing (eBook, PDF)186,99 €
- Kernel Methods for Remote Sensing Data Analysis (eBook, PDF)112,99 €
- Paul M. MatherComputer Processing of Remotely-Sensed Images (eBook, PDF)76,99 €
- Deep Learning for the Earth Sciences (eBook, PDF)117,99 €
- Shunlin S. LiangQuantitative Remote Sensing of Land Surfaces (eBook, PDF)211,99 €
- Advances in Hyperspectral Image Processing Techniques (eBook, PDF)134,99 €
- Ya-Qiu JinPolarimetric Scattering and SAR Information Retrieval (eBook, PDF)123,99 €
-
-
-
Authored by a panel of experts in the field, this book focuses on hyperspectral image analysis, systems, and applications. With discussion of application-based projects and case studies, this professional reference will bring you up-to-date on this pervasive technology, wether you are working in the military and defense fields, or in remote sensing technology, geoscience, or agriculture.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 440
- Erscheinungstermin: 22. August 2007
- Englisch
- ISBN-13: 9780470124611
- Artikelnr.: 37291007
- Verlag: John Wiley & Sons
- Seitenzahl: 440
- Erscheinungstermin: 22. August 2007
- Englisch
- ISBN-13: 9780470124611
- Artikelnr.: 37291007
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Chein-I Chang, PHD, is Professor in the Department of Computer Sciences and Electrical Engineering at the University of Maryland, Baltimore County, where he directs the Remote Sensing Signal and Image Processing Laboratory. Dr. Chang is a Fellow of SPIE, the International Society for Optical Engineering, for his achievements in hyperspectral image processing. He is Associate Editor of the IEEE Transactions on Geoscience and Remote Sensing and the author of Hyperspectral Imaging: Techniques for Spectral Detection and Classification.
Preface.
Contributors.
1. Overview (Chein-I Chang).
I TUTORALS.
2. Hyperspectral Imaging Systems (John P. Kerekes and John R. Schott).
3. Information-Processed Matched Filters for Hyperspectral Target Detection
and Classification (Chein-I Chang).
II THEORY.
4. An Optical Real-Time Adaptive Spectral Identification System (ORASIS)
(Jeffery H. Bowles and David B. Gillis).
5. Stochastic Mixture Modeling (Michael T. Eismann1 and David W. J. Stein).
6. Unmixing Hyperspectral Data: Independent and Dependent Component
Analysis (Jose M.P. Nascimento1 and Jose M.B. Dias).
7. Maximum Volume Transform For Endmember Spectra Determination (Michael E.
Winter).
8. Hyperspectral Data Representation (Xiuping Jia and John A. Richards).
9. Optimal Band Selection and Utility Evaluation for Spectral Systems
(Sylvia S. Shen).
10. Feature Reduction for Classification Purpose (Sebastiano B. Serpico,
Gabriele Moser, and Andrea F. Cattoni).
11. Semi-supervised Support Vector Machines for Classification of
Hyperspectral Remote Sensing Images (Lorenzo Bruzzone, Mingmin Chi, and
Mattia Marconcini).
III APPLICATIONS.
12. Decision Fusion for Hyperspectral Classification (Mathieu Fauvel,
Jocelyn Chanussot, and Jon Atli Benediktsson)
13. Morphological Hyperspectral Image Classification: A Parallel Processing
Perspective (Antonio J. Plaza).
14. Three-Dimensional Wavelet-Based Compression of Hyperspectral Imagery
(James E. Fowler and Justin T. Rucker).
Index.
Contributors.
1. Overview (Chein-I Chang).
I TUTORALS.
2. Hyperspectral Imaging Systems (John P. Kerekes and John R. Schott).
3. Information-Processed Matched Filters for Hyperspectral Target Detection
and Classification (Chein-I Chang).
II THEORY.
4. An Optical Real-Time Adaptive Spectral Identification System (ORASIS)
(Jeffery H. Bowles and David B. Gillis).
5. Stochastic Mixture Modeling (Michael T. Eismann1 and David W. J. Stein).
6. Unmixing Hyperspectral Data: Independent and Dependent Component
Analysis (Jose M.P. Nascimento1 and Jose M.B. Dias).
7. Maximum Volume Transform For Endmember Spectra Determination (Michael E.
Winter).
8. Hyperspectral Data Representation (Xiuping Jia and John A. Richards).
9. Optimal Band Selection and Utility Evaluation for Spectral Systems
(Sylvia S. Shen).
10. Feature Reduction for Classification Purpose (Sebastiano B. Serpico,
Gabriele Moser, and Andrea F. Cattoni).
11. Semi-supervised Support Vector Machines for Classification of
Hyperspectral Remote Sensing Images (Lorenzo Bruzzone, Mingmin Chi, and
Mattia Marconcini).
III APPLICATIONS.
12. Decision Fusion for Hyperspectral Classification (Mathieu Fauvel,
Jocelyn Chanussot, and Jon Atli Benediktsson)
13. Morphological Hyperspectral Image Classification: A Parallel Processing
Perspective (Antonio J. Plaza).
14. Three-Dimensional Wavelet-Based Compression of Hyperspectral Imagery
(James E. Fowler and Justin T. Rucker).
Index.
Preface.
Contributors.
1. Overview (Chein-I Chang).
I TUTORALS.
2. Hyperspectral Imaging Systems (John P. Kerekes and John R. Schott).
3. Information-Processed Matched Filters for Hyperspectral Target Detection
and Classification (Chein-I Chang).
II THEORY.
4. An Optical Real-Time Adaptive Spectral Identification System (ORASIS)
(Jeffery H. Bowles and David B. Gillis).
5. Stochastic Mixture Modeling (Michael T. Eismann1 and David W. J. Stein).
6. Unmixing Hyperspectral Data: Independent and Dependent Component
Analysis (Jose M.P. Nascimento1 and Jose M.B. Dias).
7. Maximum Volume Transform For Endmember Spectra Determination (Michael E.
Winter).
8. Hyperspectral Data Representation (Xiuping Jia and John A. Richards).
9. Optimal Band Selection and Utility Evaluation for Spectral Systems
(Sylvia S. Shen).
10. Feature Reduction for Classification Purpose (Sebastiano B. Serpico,
Gabriele Moser, and Andrea F. Cattoni).
11. Semi-supervised Support Vector Machines for Classification of
Hyperspectral Remote Sensing Images (Lorenzo Bruzzone, Mingmin Chi, and
Mattia Marconcini).
III APPLICATIONS.
12. Decision Fusion for Hyperspectral Classification (Mathieu Fauvel,
Jocelyn Chanussot, and Jon Atli Benediktsson)
13. Morphological Hyperspectral Image Classification: A Parallel Processing
Perspective (Antonio J. Plaza).
14. Three-Dimensional Wavelet-Based Compression of Hyperspectral Imagery
(James E. Fowler and Justin T. Rucker).
Index.
Contributors.
1. Overview (Chein-I Chang).
I TUTORALS.
2. Hyperspectral Imaging Systems (John P. Kerekes and John R. Schott).
3. Information-Processed Matched Filters for Hyperspectral Target Detection
and Classification (Chein-I Chang).
II THEORY.
4. An Optical Real-Time Adaptive Spectral Identification System (ORASIS)
(Jeffery H. Bowles and David B. Gillis).
5. Stochastic Mixture Modeling (Michael T. Eismann1 and David W. J. Stein).
6. Unmixing Hyperspectral Data: Independent and Dependent Component
Analysis (Jose M.P. Nascimento1 and Jose M.B. Dias).
7. Maximum Volume Transform For Endmember Spectra Determination (Michael E.
Winter).
8. Hyperspectral Data Representation (Xiuping Jia and John A. Richards).
9. Optimal Band Selection and Utility Evaluation for Spectral Systems
(Sylvia S. Shen).
10. Feature Reduction for Classification Purpose (Sebastiano B. Serpico,
Gabriele Moser, and Andrea F. Cattoni).
11. Semi-supervised Support Vector Machines for Classification of
Hyperspectral Remote Sensing Images (Lorenzo Bruzzone, Mingmin Chi, and
Mattia Marconcini).
III APPLICATIONS.
12. Decision Fusion for Hyperspectral Classification (Mathieu Fauvel,
Jocelyn Chanussot, and Jon Atli Benediktsson)
13. Morphological Hyperspectral Image Classification: A Parallel Processing
Perspective (Antonio J. Plaza).
14. Three-Dimensional Wavelet-Based Compression of Hyperspectral Imagery
(James E. Fowler and Justin T. Rucker).
Index.