Roshdi Rashed
Ibn al-Haytham and Analytical Mathematics (eBook, ePUB)
A History of Arabic Sciences and Mathematics Volume 2
51,95 €
51,95 €
inkl. MwSt.
Sofort per Download lieferbar
26 °P sammeln
51,95 €
Als Download kaufen
51,95 €
inkl. MwSt.
Sofort per Download lieferbar
26 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
51,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
26 °P sammeln
Roshdi Rashed
Ibn al-Haytham and Analytical Mathematics (eBook, ePUB)
A History of Arabic Sciences and Mathematics Volume 2
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This volume provides a unique primary source on the history and philosophy of mathematics and the exact sciences from the mediaeval Arab world. It also includes extensive commentary from one of the world's foremost authorities in the field of Arabic sciences and philosophy, the eminent scholar Roshdi Rashed, who illuminates the various historical, textual and epistemic threads that underpinned the history of Arabic mathematical and scientific knowledge up to the seventeenth century.
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 7.71MB
Andere Kunden interessierten sich auch für
- Roshdi RashedIbn al-Haytham's Theory of Conics, Geometrical Constructions and Practical Geometry (eBook, ePUB)40,95 €
- Roshdi RashedIbn al-Haytham, New Astronomy and Spherical Geometry (eBook, ePUB)40,95 €
- Roshdi RashedIbn al-Haytham and Analytical Mathematics (eBook, PDF)51,95 €
- Ibn al-Haytham's Geometrical Methods and the Philosophy of Mathematics (eBook, ePUB)41,95 €
- Roshdi RashedIbn al-Haytham's Theory of Conics, Geometrical Constructions and Practical Geometry (eBook, PDF)40,95 €
- Roshdi RashedClassical Mathematics from Al-Khwarizmi to Descartes (eBook, ePUB)41,95 €
- Roshdi RashedIbn al-Haytham, New Astronomy and Spherical Geometry (eBook, PDF)40,95 €
-
-
-
This volume provides a unique primary source on the history and philosophy of mathematics and the exact sciences from the mediaeval Arab world. It also includes extensive commentary from one of the world's foremost authorities in the field of Arabic sciences and philosophy, the eminent scholar Roshdi Rashed, who illuminates the various historical, textual and epistemic threads that underpinned the history of Arabic mathematical and scientific knowledge up to the seventeenth century.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 464
- Erscheinungstermin: 2. Mai 2013
- Englisch
- ISBN-13: 9781136191077
- Artikelnr.: 39266296
- Verlag: Taylor & Francis eBooks
- Seitenzahl: 464
- Erscheinungstermin: 2. Mai 2013
- Englisch
- ISBN-13: 9781136191077
- Artikelnr.: 39266296
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Roshdi Rashed is one of the most eminent authorities on Arabic mathematics and the exact sciences. A historian and philosopher of mathematics and science and a highly celebrated epistemologist, he is currently Emeritus Research Director (distinguished class) at the Centre National de la Recherche Scientifique (CNRS) in Paris, and is the former Director of the Centre for History of Arabic and Medieval Science and Philosophy at the University of Paris (Denis Diderot, Paris VII). He also holds an Honorary Professorship at the University of Tokyo and an Emeritus Professorship at the University of Mansourah in Egypt.
CONTENTS
Preface
.....................................................................................
xi
Note
.......................................................................................
xiii
INTRODUCTION: IBN AL-HAYTHAM AND HIS WORK ON INFINITESIMAL
MATHEMATICS
1. Ibn al-Haytham: from Basra to Cairo
.............................................. 1
2. Al-Îasan ibn al-Îasan and MuÌammad ibn al-Îasan:
mathematician and philosopher
......................................................... 11
3. The works of al-Îasan ibn al-Haytham on infinitesimal mathematics
......... 25
CHAPTER I: THE QUADRATURE OF LUNES AND CIRCLES
1.1. INTRODUCTION
....................................................................... 39
1.2. MATHEMATICAL COMMENTARY
................................................ 42
1.2.1. Treatise on lunes
................................................................. 42
1.2.2. Treatise on the quadrature of the circle
........................................ 46
1.2.3. Exhaustive treatise on the figures of lunes
.................................... 49
1.3. TRANSLATED TEXTS
1.3.1. Treatise on Lunes
............................................................... 93
1.3.2. Treatise on the Quadrature of the Circle
.................................... 99
1.3.3. Exhaustive Treatise on the Figures of Lunes
.............................. 107
CHAPTER II: CALCULATION OF VOLUMES OF PARABOLOIDS AND SPHERES
AND THE EXHAUSTION METHOD
2.1. INTRODUCTION
....................................................................... 143
2.2. MATHEMATICAL COMMENTARY
................................................ 144
2.2.1. Calculation of volumes of paraboloids
........................................ 144
2.2.2.1. Arithmetical lemmas
................................................... 144
2.2.2.2. Volume of a paraboloid of revolution
................................ 151
2.2.2.3. The volume of the second species of paraboloid ...................
160
2.2.2.4. Study of surrounding solids
.......................................... 164
2.2.3. Calculation of the volume of a sphere
......................................... 168
2.3. TRANSLATED TEXTS:
2.3.1. On the Measurement of the Paraboloid
...................................... 177
2.3.2. On the Measurement of the Sphere
.......................................... 221
2.3.3. On the Division of Two Different Magnitudes as Mentioned
in the First Proposition of the Tenth Book of Euclid's Elements
.............. 235
CHAPTER III: THE PROBLEMS OF ISOPERIMETRIC AND ISEPIPHANIC
FIGURES AND THE STUDY OF THE SOLID ANGLE
3.1. INTRODUCTION
....................................................................... 239
3.2. MATHEMATICAL COMMENTARY
................................................ 242
x CONTENTS
3.3. TRANSLATED TEXT: On the Sphere which is the Largest of all the Solid
Figures having Equal Perimeters and On the Circle which is the Largest
of all the Plane Figures having Equal Perimeters
...................................... 305
APPENDIX: THE APPROXIMATION OF ROOTS
4.1. MATHEMATICAL COMMENTARY
................................................ 343
4.2. TRANSLATED TEXTS
4.3.1. On the Cause of the Square Root, its Doubling and its Displacement
... 351
4.3.2. On the Extraction of the Side of a Cube
........................................ 357
SUPPLEMENTARY NOTES
1. On the Arithmetic of Transactions
................................................ 361
2. The Configuration of the Universe: a Book by al-Îasan ibn al-Haytham ? .
362
3. Ibn Sinæn and Ibn al-Haytham on the subject of 'shadow lines'
................ 377
4. Commentary in the Resolution of Doubts by Ibn al-Haytham on
Proposition X.1 of the Elements
...................................................... 381
5. List of Ibn al-Haytham's works
.................................................... 391
BIBLIOGRAPHY
.............................................................................
429
INDEXES
Index of names
...........................................................................
439
Subject index
.............................................................................
Index of works .........................................................
Preface
.....................................................................................
xi
Note
.......................................................................................
xiii
INTRODUCTION: IBN AL-HAYTHAM AND HIS WORK ON INFINITESIMAL
MATHEMATICS
1. Ibn al-Haytham: from Basra to Cairo
.............................................. 1
2. Al-Îasan ibn al-Îasan and MuÌammad ibn al-Îasan:
mathematician and philosopher
......................................................... 11
3. The works of al-Îasan ibn al-Haytham on infinitesimal mathematics
......... 25
CHAPTER I: THE QUADRATURE OF LUNES AND CIRCLES
1.1. INTRODUCTION
....................................................................... 39
1.2. MATHEMATICAL COMMENTARY
................................................ 42
1.2.1. Treatise on lunes
................................................................. 42
1.2.2. Treatise on the quadrature of the circle
........................................ 46
1.2.3. Exhaustive treatise on the figures of lunes
.................................... 49
1.3. TRANSLATED TEXTS
1.3.1. Treatise on Lunes
............................................................... 93
1.3.2. Treatise on the Quadrature of the Circle
.................................... 99
1.3.3. Exhaustive Treatise on the Figures of Lunes
.............................. 107
CHAPTER II: CALCULATION OF VOLUMES OF PARABOLOIDS AND SPHERES
AND THE EXHAUSTION METHOD
2.1. INTRODUCTION
....................................................................... 143
2.2. MATHEMATICAL COMMENTARY
................................................ 144
2.2.1. Calculation of volumes of paraboloids
........................................ 144
2.2.2.1. Arithmetical lemmas
................................................... 144
2.2.2.2. Volume of a paraboloid of revolution
................................ 151
2.2.2.3. The volume of the second species of paraboloid ...................
160
2.2.2.4. Study of surrounding solids
.......................................... 164
2.2.3. Calculation of the volume of a sphere
......................................... 168
2.3. TRANSLATED TEXTS:
2.3.1. On the Measurement of the Paraboloid
...................................... 177
2.3.2. On the Measurement of the Sphere
.......................................... 221
2.3.3. On the Division of Two Different Magnitudes as Mentioned
in the First Proposition of the Tenth Book of Euclid's Elements
.............. 235
CHAPTER III: THE PROBLEMS OF ISOPERIMETRIC AND ISEPIPHANIC
FIGURES AND THE STUDY OF THE SOLID ANGLE
3.1. INTRODUCTION
....................................................................... 239
3.2. MATHEMATICAL COMMENTARY
................................................ 242
x CONTENTS
3.3. TRANSLATED TEXT: On the Sphere which is the Largest of all the Solid
Figures having Equal Perimeters and On the Circle which is the Largest
of all the Plane Figures having Equal Perimeters
...................................... 305
APPENDIX: THE APPROXIMATION OF ROOTS
4.1. MATHEMATICAL COMMENTARY
................................................ 343
4.2. TRANSLATED TEXTS
4.3.1. On the Cause of the Square Root, its Doubling and its Displacement
... 351
4.3.2. On the Extraction of the Side of a Cube
........................................ 357
SUPPLEMENTARY NOTES
1. On the Arithmetic of Transactions
................................................ 361
2. The Configuration of the Universe: a Book by al-Îasan ibn al-Haytham ? .
362
3. Ibn Sinæn and Ibn al-Haytham on the subject of 'shadow lines'
................ 377
4. Commentary in the Resolution of Doubts by Ibn al-Haytham on
Proposition X.1 of the Elements
...................................................... 381
5. List of Ibn al-Haytham's works
.................................................... 391
BIBLIOGRAPHY
.............................................................................
429
INDEXES
Index of names
...........................................................................
439
Subject index
.............................................................................
Index of works .........................................................
CONTENTS
Preface
.....................................................................................
xi
Note
.......................................................................................
xiii
INTRODUCTION: IBN AL-HAYTHAM AND HIS WORK ON INFINITESIMAL
MATHEMATICS
1. Ibn al-Haytham: from Basra to Cairo
.............................................. 1
2. Al-Îasan ibn al-Îasan and MuÌammad ibn al-Îasan:
mathematician and philosopher
......................................................... 11
3. The works of al-Îasan ibn al-Haytham on infinitesimal mathematics
......... 25
CHAPTER I: THE QUADRATURE OF LUNES AND CIRCLES
1.1. INTRODUCTION
....................................................................... 39
1.2. MATHEMATICAL COMMENTARY
................................................ 42
1.2.1. Treatise on lunes
................................................................. 42
1.2.2. Treatise on the quadrature of the circle
........................................ 46
1.2.3. Exhaustive treatise on the figures of lunes
.................................... 49
1.3. TRANSLATED TEXTS
1.3.1. Treatise on Lunes
............................................................... 93
1.3.2. Treatise on the Quadrature of the Circle
.................................... 99
1.3.3. Exhaustive Treatise on the Figures of Lunes
.............................. 107
CHAPTER II: CALCULATION OF VOLUMES OF PARABOLOIDS AND SPHERES
AND THE EXHAUSTION METHOD
2.1. INTRODUCTION
....................................................................... 143
2.2. MATHEMATICAL COMMENTARY
................................................ 144
2.2.1. Calculation of volumes of paraboloids
........................................ 144
2.2.2.1. Arithmetical lemmas
................................................... 144
2.2.2.2. Volume of a paraboloid of revolution
................................ 151
2.2.2.3. The volume of the second species of paraboloid ...................
160
2.2.2.4. Study of surrounding solids
.......................................... 164
2.2.3. Calculation of the volume of a sphere
......................................... 168
2.3. TRANSLATED TEXTS:
2.3.1. On the Measurement of the Paraboloid
...................................... 177
2.3.2. On the Measurement of the Sphere
.......................................... 221
2.3.3. On the Division of Two Different Magnitudes as Mentioned
in the First Proposition of the Tenth Book of Euclid's Elements
.............. 235
CHAPTER III: THE PROBLEMS OF ISOPERIMETRIC AND ISEPIPHANIC
FIGURES AND THE STUDY OF THE SOLID ANGLE
3.1. INTRODUCTION
....................................................................... 239
3.2. MATHEMATICAL COMMENTARY
................................................ 242
x CONTENTS
3.3. TRANSLATED TEXT: On the Sphere which is the Largest of all the Solid
Figures having Equal Perimeters and On the Circle which is the Largest
of all the Plane Figures having Equal Perimeters
...................................... 305
APPENDIX: THE APPROXIMATION OF ROOTS
4.1. MATHEMATICAL COMMENTARY
................................................ 343
4.2. TRANSLATED TEXTS
4.3.1. On the Cause of the Square Root, its Doubling and its Displacement
... 351
4.3.2. On the Extraction of the Side of a Cube
........................................ 357
SUPPLEMENTARY NOTES
1. On the Arithmetic of Transactions
................................................ 361
2. The Configuration of the Universe: a Book by al-Îasan ibn al-Haytham ? .
362
3. Ibn Sinæn and Ibn al-Haytham on the subject of 'shadow lines'
................ 377
4. Commentary in the Resolution of Doubts by Ibn al-Haytham on
Proposition X.1 of the Elements
...................................................... 381
5. List of Ibn al-Haytham's works
.................................................... 391
BIBLIOGRAPHY
.............................................................................
429
INDEXES
Index of names
...........................................................................
439
Subject index
.............................................................................
Index of works .........................................................
Preface
.....................................................................................
xi
Note
.......................................................................................
xiii
INTRODUCTION: IBN AL-HAYTHAM AND HIS WORK ON INFINITESIMAL
MATHEMATICS
1. Ibn al-Haytham: from Basra to Cairo
.............................................. 1
2. Al-Îasan ibn al-Îasan and MuÌammad ibn al-Îasan:
mathematician and philosopher
......................................................... 11
3. The works of al-Îasan ibn al-Haytham on infinitesimal mathematics
......... 25
CHAPTER I: THE QUADRATURE OF LUNES AND CIRCLES
1.1. INTRODUCTION
....................................................................... 39
1.2. MATHEMATICAL COMMENTARY
................................................ 42
1.2.1. Treatise on lunes
................................................................. 42
1.2.2. Treatise on the quadrature of the circle
........................................ 46
1.2.3. Exhaustive treatise on the figures of lunes
.................................... 49
1.3. TRANSLATED TEXTS
1.3.1. Treatise on Lunes
............................................................... 93
1.3.2. Treatise on the Quadrature of the Circle
.................................... 99
1.3.3. Exhaustive Treatise on the Figures of Lunes
.............................. 107
CHAPTER II: CALCULATION OF VOLUMES OF PARABOLOIDS AND SPHERES
AND THE EXHAUSTION METHOD
2.1. INTRODUCTION
....................................................................... 143
2.2. MATHEMATICAL COMMENTARY
................................................ 144
2.2.1. Calculation of volumes of paraboloids
........................................ 144
2.2.2.1. Arithmetical lemmas
................................................... 144
2.2.2.2. Volume of a paraboloid of revolution
................................ 151
2.2.2.3. The volume of the second species of paraboloid ...................
160
2.2.2.4. Study of surrounding solids
.......................................... 164
2.2.3. Calculation of the volume of a sphere
......................................... 168
2.3. TRANSLATED TEXTS:
2.3.1. On the Measurement of the Paraboloid
...................................... 177
2.3.2. On the Measurement of the Sphere
.......................................... 221
2.3.3. On the Division of Two Different Magnitudes as Mentioned
in the First Proposition of the Tenth Book of Euclid's Elements
.............. 235
CHAPTER III: THE PROBLEMS OF ISOPERIMETRIC AND ISEPIPHANIC
FIGURES AND THE STUDY OF THE SOLID ANGLE
3.1. INTRODUCTION
....................................................................... 239
3.2. MATHEMATICAL COMMENTARY
................................................ 242
x CONTENTS
3.3. TRANSLATED TEXT: On the Sphere which is the Largest of all the Solid
Figures having Equal Perimeters and On the Circle which is the Largest
of all the Plane Figures having Equal Perimeters
...................................... 305
APPENDIX: THE APPROXIMATION OF ROOTS
4.1. MATHEMATICAL COMMENTARY
................................................ 343
4.2. TRANSLATED TEXTS
4.3.1. On the Cause of the Square Root, its Doubling and its Displacement
... 351
4.3.2. On the Extraction of the Side of a Cube
........................................ 357
SUPPLEMENTARY NOTES
1. On the Arithmetic of Transactions
................................................ 361
2. The Configuration of the Universe: a Book by al-Îasan ibn al-Haytham ? .
362
3. Ibn Sinæn and Ibn al-Haytham on the subject of 'shadow lines'
................ 377
4. Commentary in the Resolution of Doubts by Ibn al-Haytham on
Proposition X.1 of the Elements
...................................................... 381
5. List of Ibn al-Haytham's works
.................................................... 391
BIBLIOGRAPHY
.............................................................................
429
INDEXES
Index of names
...........................................................................
439
Subject index
.............................................................................
Index of works .........................................................