Joachim Nölte
ICP Emissionsspektrometrie für Praktiker (eBook, PDF)
Grundlagen, Methodenentwicklung, Anwendungsbeispiele
82,99 €
Statt 92,90 €**
82,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
0 °P sammeln
82,99 €
Statt 92,90 €**
82,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
0 °P sammeln
Als Download kaufen
Statt 92,90 €****
82,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
0 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
Statt 92,90 €****
82,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
0 °P sammeln
Joachim Nölte
ICP Emissionsspektrometrie für Praktiker (eBook, PDF)
Grundlagen, Methodenentwicklung, Anwendungsbeispiele
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Die Neuauflage dieser beliebten, leicht verständlichen und anwenderorientierten Einführung in die ICP-Emissionspektrometrie umfaßt die praxisrelevanten Grundlagen, gerätetechnische Informationen, eine Anleitung zur Methodenentwicklung sowie viele praktische Anwendungsbeispiele.
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 9.37MB
Die Neuauflage dieser beliebten, leicht verständlichen und anwenderorientierten Einführung in die ICP-Emissionspektrometrie umfaßt die praxisrelevanten Grundlagen, gerätetechnische Informationen, eine Anleitung zur Methodenentwicklung sowie viele praktische Anwendungsbeispiele.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley-VCH
- Seitenzahl: 288
- Erscheinungstermin: 5. November 2020
- Deutsch
- ISBN-13: 9783527823659
- Artikelnr.: 60559923
- Verlag: Wiley-VCH
- Seitenzahl: 288
- Erscheinungstermin: 5. November 2020
- Deutsch
- ISBN-13: 9783527823659
- Artikelnr.: 60559923
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Joachim Nölte studierte an der Universität Hamburg und promovierte dort im auf Umweltanalytik spezialisierten Arbeitskreis von Prof. Dannecker. Seit 1981 arbeitet er mit der ICP OES, schrieb zahlreiche Veröffentlichungen und ist in DIN und ISO Ausschüssen tätig. Von 1988 bis 1997 war er im ICP OES-Applikationslabor von Perkin Elmer für Methodenentwicklung, Anwenderschulung und Präsentation verantwortlich. Von 1998 bis 2000 wirkte er an der Neuentwicklung eines ICP OES-Gerätes mit. Anfang 2000 gründete er die Beratergemeinschaft AnalytikSupport.
1 Ein Überblick
1.1 Analytische Merkmale der ICP OES
1.2 ICP OES - Nomen est omen
1.3 Verbreitung der ICP OES
1.4 Weitere Techniken zur Elementanalytik
1.5 Begriffe
2 Plasma
2.1 Das analytisch genutzte Plasma
2.1.1 Betriebsgas
2.1.2 Plasmafackel
2.1.3 Zünden des Plasmas
2.1.4 Orientierung des Plasmas bzw. der Fackel
2.2 Anregung zur Emission von elektromagnetischer Strahlung
2.2.1 Emissionslinien
2.2.2 Energie und Temperatur
2.2.3 Spektroskopische Eigenschaften des ICP
2.2.4 Plasmabeobachtung
2.3 Anregungseinheit
2.3.1 Hochfrequenzgenerator
2.3.2 Induktionsspule
2.4 Probeneinführungssystem
2.4.1 Zerstäuber
2.4.2 Zerstäuberkammer
2.4.3 Pumpe
2.4.4 Sonstige Formen des Probeneintrags
3 Optik und Detektor des Spektrometers
3.1 Optische Grundlagen
3.1.1 Auflösung
3.1.2 Relevante Grundbegriffe der Optik
3.1.3 Optische Aufbauten
3.1.4 Lichttransfer vom Plasma zur Optik
3.1.4.1 Trennung von Plasmaraum und Optik
3.1.4.2 Transparenz der Optik im Vakuum-UV-Bereich
3.2 Detektor
3.2.1 Photomultiplier-Tube (PMT)
3.2.2 Halbleiterdetektoren
3.3 Apparativer Aufbau eines Emissionsspektrometers
3.3.1 Klassische Spektrometer
3.3.2 Array-Spektrometer
4 Methodenentwicklung
4.1 Wellenlängenauswahl
4.1.1 Arbeitsbereich
4.1.2 Spektrale Störfreiheit
4.2 Auswerte- und Korrekturtechniken
4.2.1 Signalauswertung
4.2.2 Untergrundkorrektur
4.2.3 Einfluss der Peak-Auswertung und Untergrundkorrektur auf die Nachweisgrenzen
4.2.4 Korrektur spektraler Störungen
4.3 Nicht-spektrale Störungen
4.3.1 Korrektur nicht-spektraler Störungen
4.4 Optimierung
4.4.1 Optimierungsziele
4.4.2 Optimierungsparameter
4.4.3 Optimierungsalgorithmen
4.5 Validierung
4.5.1 Richtigkeit und Spezifität
4.5.2 Wiederholbarkeit
4.5.3 Nachweisgrenze
4.5.4 Arbeitsbereich
4.5.5 Robustheit
5 Routineanalyse
5.1 Vorbereitung
5.1.1 Probenvorbereitung
5.1.2 Einbrennzeit
5.1.3 Spülzeiten
5.2 Kalibrieren
5.2.1 Bezugslösungen
5.2.2 Kalibrierfunktionen
5.2.3 Bewerten der Kalibrierung
5.3 Analytische Qualitätssicherung
5.4 Software und Datenbearbeitung
6 Fehler: Ursachen finden und vermeiden
7 Anwendungen
7.1 Allgemeine Hinweise
7.1.1 Gefäßmaterial
7.1.2 Stabilität von Lösungen
7.1.3 Matrix-Effekte
7.1.4 Kontaminationen
7.2 Hinweise zu einzelnen Elementen
7.3 Ausgewählte Anwendungen
7.3.1 Umwelt
7.3.2 Proben biologischen Ursprungs
7.3.3 Geologisches Material
7.3.4 Metallurgie
7.3.5 Materialwissenschaften
7.3.6 Industrielle Anwendungen
7.3.7 Organische Lösungsmittel
8 Beschaffung und Laborvorbereitung
8.1 Welche atomspektrometrische Technik ist geeignet?
8.2 Welches ICP Emissionsspektrometer ist geeignet?
8.3 Vorbereitung des Labors
9 Literatur
1.1 Analytische Merkmale der ICP OES
1.2 ICP OES - Nomen est omen
1.3 Verbreitung der ICP OES
1.4 Weitere Techniken zur Elementanalytik
1.5 Begriffe
2 Plasma
2.1 Das analytisch genutzte Plasma
2.1.1 Betriebsgas
2.1.2 Plasmafackel
2.1.3 Zünden des Plasmas
2.1.4 Orientierung des Plasmas bzw. der Fackel
2.2 Anregung zur Emission von elektromagnetischer Strahlung
2.2.1 Emissionslinien
2.2.2 Energie und Temperatur
2.2.3 Spektroskopische Eigenschaften des ICP
2.2.4 Plasmabeobachtung
2.3 Anregungseinheit
2.3.1 Hochfrequenzgenerator
2.3.2 Induktionsspule
2.4 Probeneinführungssystem
2.4.1 Zerstäuber
2.4.2 Zerstäuberkammer
2.4.3 Pumpe
2.4.4 Sonstige Formen des Probeneintrags
3 Optik und Detektor des Spektrometers
3.1 Optische Grundlagen
3.1.1 Auflösung
3.1.2 Relevante Grundbegriffe der Optik
3.1.3 Optische Aufbauten
3.1.4 Lichttransfer vom Plasma zur Optik
3.1.4.1 Trennung von Plasmaraum und Optik
3.1.4.2 Transparenz der Optik im Vakuum-UV-Bereich
3.2 Detektor
3.2.1 Photomultiplier-Tube (PMT)
3.2.2 Halbleiterdetektoren
3.3 Apparativer Aufbau eines Emissionsspektrometers
3.3.1 Klassische Spektrometer
3.3.2 Array-Spektrometer
4 Methodenentwicklung
4.1 Wellenlängenauswahl
4.1.1 Arbeitsbereich
4.1.2 Spektrale Störfreiheit
4.2 Auswerte- und Korrekturtechniken
4.2.1 Signalauswertung
4.2.2 Untergrundkorrektur
4.2.3 Einfluss der Peak-Auswertung und Untergrundkorrektur auf die Nachweisgrenzen
4.2.4 Korrektur spektraler Störungen
4.3 Nicht-spektrale Störungen
4.3.1 Korrektur nicht-spektraler Störungen
4.4 Optimierung
4.4.1 Optimierungsziele
4.4.2 Optimierungsparameter
4.4.3 Optimierungsalgorithmen
4.5 Validierung
4.5.1 Richtigkeit und Spezifität
4.5.2 Wiederholbarkeit
4.5.3 Nachweisgrenze
4.5.4 Arbeitsbereich
4.5.5 Robustheit
5 Routineanalyse
5.1 Vorbereitung
5.1.1 Probenvorbereitung
5.1.2 Einbrennzeit
5.1.3 Spülzeiten
5.2 Kalibrieren
5.2.1 Bezugslösungen
5.2.2 Kalibrierfunktionen
5.2.3 Bewerten der Kalibrierung
5.3 Analytische Qualitätssicherung
5.4 Software und Datenbearbeitung
6 Fehler: Ursachen finden und vermeiden
7 Anwendungen
7.1 Allgemeine Hinweise
7.1.1 Gefäßmaterial
7.1.2 Stabilität von Lösungen
7.1.3 Matrix-Effekte
7.1.4 Kontaminationen
7.2 Hinweise zu einzelnen Elementen
7.3 Ausgewählte Anwendungen
7.3.1 Umwelt
7.3.2 Proben biologischen Ursprungs
7.3.3 Geologisches Material
7.3.4 Metallurgie
7.3.5 Materialwissenschaften
7.3.6 Industrielle Anwendungen
7.3.7 Organische Lösungsmittel
8 Beschaffung und Laborvorbereitung
8.1 Welche atomspektrometrische Technik ist geeignet?
8.2 Welches ICP Emissionsspektrometer ist geeignet?
8.3 Vorbereitung des Labors
9 Literatur
1 Ein Überblick
1.1 Analytische Merkmale der ICP OES
1.2 ICP OES - Nomen est omen
1.3 Verbreitung der ICP OES
1.4 Weitere Techniken zur Elementanalytik
1.5 Begriffe
2 Plasma
2.1 Das analytisch genutzte Plasma
2.1.1 Betriebsgas
2.1.2 Plasmafackel
2.1.3 Zünden des Plasmas
2.1.4 Orientierung des Plasmas bzw. der Fackel
2.2 Anregung zur Emission von elektromagnetischer Strahlung
2.2.1 Emissionslinien
2.2.2 Energie und Temperatur
2.2.3 Spektroskopische Eigenschaften des ICP
2.2.4 Plasmabeobachtung
2.3 Anregungseinheit
2.3.1 Hochfrequenzgenerator
2.3.2 Induktionsspule
2.4 Probeneinführungssystem
2.4.1 Zerstäuber
2.4.2 Zerstäuberkammer
2.4.3 Pumpe
2.4.4 Sonstige Formen des Probeneintrags
3 Optik und Detektor des Spektrometers
3.1 Optische Grundlagen
3.1.1 Auflösung
3.1.2 Relevante Grundbegriffe der Optik
3.1.3 Optische Aufbauten
3.1.4 Lichttransfer vom Plasma zur Optik
3.1.4.1 Trennung von Plasmaraum und Optik
3.1.4.2 Transparenz der Optik im Vakuum-UV-Bereich
3.2 Detektor
3.2.1 Photomultiplier-Tube (PMT)
3.2.2 Halbleiterdetektoren
3.3 Apparativer Aufbau eines Emissionsspektrometers
3.3.1 Klassische Spektrometer
3.3.2 Array-Spektrometer
4 Methodenentwicklung
4.1 Wellenlängenauswahl
4.1.1 Arbeitsbereich
4.1.2 Spektrale Störfreiheit
4.2 Auswerte- und Korrekturtechniken
4.2.1 Signalauswertung
4.2.2 Untergrundkorrektur
4.2.3 Einfluss der Peak-Auswertung und Untergrundkorrektur auf die Nachweisgrenzen
4.2.4 Korrektur spektraler Störungen
4.3 Nicht-spektrale Störungen
4.3.1 Korrektur nicht-spektraler Störungen
4.4 Optimierung
4.4.1 Optimierungsziele
4.4.2 Optimierungsparameter
4.4.3 Optimierungsalgorithmen
4.5 Validierung
4.5.1 Richtigkeit und Spezifität
4.5.2 Wiederholbarkeit
4.5.3 Nachweisgrenze
4.5.4 Arbeitsbereich
4.5.5 Robustheit
5 Routineanalyse
5.1 Vorbereitung
5.1.1 Probenvorbereitung
5.1.2 Einbrennzeit
5.1.3 Spülzeiten
5.2 Kalibrieren
5.2.1 Bezugslösungen
5.2.2 Kalibrierfunktionen
5.2.3 Bewerten der Kalibrierung
5.3 Analytische Qualitätssicherung
5.4 Software und Datenbearbeitung
6 Fehler: Ursachen finden und vermeiden
7 Anwendungen
7.1 Allgemeine Hinweise
7.1.1 Gefäßmaterial
7.1.2 Stabilität von Lösungen
7.1.3 Matrix-Effekte
7.1.4 Kontaminationen
7.2 Hinweise zu einzelnen Elementen
7.3 Ausgewählte Anwendungen
7.3.1 Umwelt
7.3.2 Proben biologischen Ursprungs
7.3.3 Geologisches Material
7.3.4 Metallurgie
7.3.5 Materialwissenschaften
7.3.6 Industrielle Anwendungen
7.3.7 Organische Lösungsmittel
8 Beschaffung und Laborvorbereitung
8.1 Welche atomspektrometrische Technik ist geeignet?
8.2 Welches ICP Emissionsspektrometer ist geeignet?
8.3 Vorbereitung des Labors
9 Literatur
1.1 Analytische Merkmale der ICP OES
1.2 ICP OES - Nomen est omen
1.3 Verbreitung der ICP OES
1.4 Weitere Techniken zur Elementanalytik
1.5 Begriffe
2 Plasma
2.1 Das analytisch genutzte Plasma
2.1.1 Betriebsgas
2.1.2 Plasmafackel
2.1.3 Zünden des Plasmas
2.1.4 Orientierung des Plasmas bzw. der Fackel
2.2 Anregung zur Emission von elektromagnetischer Strahlung
2.2.1 Emissionslinien
2.2.2 Energie und Temperatur
2.2.3 Spektroskopische Eigenschaften des ICP
2.2.4 Plasmabeobachtung
2.3 Anregungseinheit
2.3.1 Hochfrequenzgenerator
2.3.2 Induktionsspule
2.4 Probeneinführungssystem
2.4.1 Zerstäuber
2.4.2 Zerstäuberkammer
2.4.3 Pumpe
2.4.4 Sonstige Formen des Probeneintrags
3 Optik und Detektor des Spektrometers
3.1 Optische Grundlagen
3.1.1 Auflösung
3.1.2 Relevante Grundbegriffe der Optik
3.1.3 Optische Aufbauten
3.1.4 Lichttransfer vom Plasma zur Optik
3.1.4.1 Trennung von Plasmaraum und Optik
3.1.4.2 Transparenz der Optik im Vakuum-UV-Bereich
3.2 Detektor
3.2.1 Photomultiplier-Tube (PMT)
3.2.2 Halbleiterdetektoren
3.3 Apparativer Aufbau eines Emissionsspektrometers
3.3.1 Klassische Spektrometer
3.3.2 Array-Spektrometer
4 Methodenentwicklung
4.1 Wellenlängenauswahl
4.1.1 Arbeitsbereich
4.1.2 Spektrale Störfreiheit
4.2 Auswerte- und Korrekturtechniken
4.2.1 Signalauswertung
4.2.2 Untergrundkorrektur
4.2.3 Einfluss der Peak-Auswertung und Untergrundkorrektur auf die Nachweisgrenzen
4.2.4 Korrektur spektraler Störungen
4.3 Nicht-spektrale Störungen
4.3.1 Korrektur nicht-spektraler Störungen
4.4 Optimierung
4.4.1 Optimierungsziele
4.4.2 Optimierungsparameter
4.4.3 Optimierungsalgorithmen
4.5 Validierung
4.5.1 Richtigkeit und Spezifität
4.5.2 Wiederholbarkeit
4.5.3 Nachweisgrenze
4.5.4 Arbeitsbereich
4.5.5 Robustheit
5 Routineanalyse
5.1 Vorbereitung
5.1.1 Probenvorbereitung
5.1.2 Einbrennzeit
5.1.3 Spülzeiten
5.2 Kalibrieren
5.2.1 Bezugslösungen
5.2.2 Kalibrierfunktionen
5.2.3 Bewerten der Kalibrierung
5.3 Analytische Qualitätssicherung
5.4 Software und Datenbearbeitung
6 Fehler: Ursachen finden und vermeiden
7 Anwendungen
7.1 Allgemeine Hinweise
7.1.1 Gefäßmaterial
7.1.2 Stabilität von Lösungen
7.1.3 Matrix-Effekte
7.1.4 Kontaminationen
7.2 Hinweise zu einzelnen Elementen
7.3 Ausgewählte Anwendungen
7.3.1 Umwelt
7.3.2 Proben biologischen Ursprungs
7.3.3 Geologisches Material
7.3.4 Metallurgie
7.3.5 Materialwissenschaften
7.3.6 Industrielle Anwendungen
7.3.7 Organische Lösungsmittel
8 Beschaffung und Laborvorbereitung
8.1 Welche atomspektrometrische Technik ist geeignet?
8.2 Welches ICP Emissionsspektrometer ist geeignet?
8.3 Vorbereitung des Labors
9 Literatur