-22%11
42,99 €
54,99 €**
42,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
21 °P sammeln
-22%11
42,99 €
54,99 €**
42,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
21 °P sammeln
Als Download kaufen
54,99 €****
-22%11
42,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
21 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
54,99 €****
-22%11
42,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
21 °P sammeln
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 29.17MB
Andere Kunden interessierten sich auch für
- -22%11Simon Große-WildeWerkstoff zwischen den Systemen - Eine Stoffgeschichte der Vulkanfiber im 19. und 20. Jahrhundert (eBook, PDF)42,99 €
- -45%11Conrad Matschoß50 Jahre Ingenieur-Arbeit in Oberschlesien (eBook, PDF)33,26 €
- -22%11Ergebnisse der exakten Naturwissenschaften (eBook, PDF)42,99 €
- -22%11Max HartmannPhilosophie der Naturwissenschaften (eBook, PDF)42,99 €
- -35%11Gesellschaft Deutscher Naturforscher Und ÄrzteMitgliederverzeichnis (eBook, PDF)35,96 €
- -22%11Karl Bonhoeffer (eBook, PDF)42,99 €
- -22%11Ergebnisse der Exakten Naturwissenschaften (eBook, PDF)42,99 €
- -22%11
- -22%11
Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 152
- Erscheinungstermin: 13. August 2013
- Deutsch
- ISBN-13: 9783642941818
- Artikelnr.: 53101319
- Verlag: Springer Berlin Heidelberg
- Seitenzahl: 152
- Erscheinungstermin: 13. August 2013
- Deutsch
- ISBN-13: 9783642941818
- Artikelnr.: 53101319
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1. Grundlagen und Ausgangspunkte.- 1. Gruppen mit Operatoren und Ideale.- 2. Prim- und Primärideale. Polynomringe.- 3. Der Zerlegungssatz in abstrakten Ringen.- 4. Zahlentheoretische Grundlagen der Ideal theorie.- 5. Ganz abgeschlossene Integritätsbereiche.- 2. Abstrakte additive Idealtheorie.- 6. Isolierte Komponentenideale.- 7. Quotientenringe.- 8. Teilerfremde Ideale. Direkte Summen.- 9. Einartige Nullteilerringe.- 10. Einartige Integritätsbereiche.- 11. Operatorgruppen.- 12. Elementarteilergruppen.- 13. Primäre (Nullteiler-) Ringe.- 14. Additive Theorie der 0-Ringe.- 15. Prim- und Primäridealketten in O-Ringen.- 3. Polynomringe.- 16. Integritätsbereiche von endlichem Transzendenzgrad.- 17. Endliche Integritätsbereiche und Polynomringe. Ungemischtheits-sätze.- 18. Allgemeine und spezielle Nullstellen eines Polynomideals.- 19. Nullstellentheorie der Potenzreihenideale.- 20. Das "Rechnen" mit Polynomidealen.- 21. Gruppentheorie der Polynomideale.- 22. Eliminationstheorie.- 23. Der Bézoutsche Satz und die Hentzeltschen Nullstellensätze.- 24. Hilberts Funktion.- 25. Das inverse System.- 26. Die Multiplizitätstheorie von van der Waerden.- 27. Der Grad einer Mannigfaltigkeit und der "allgemeine" BézouTsche Satz.- 28. Zweifach projektive Räume.- 4. Einartige Bereiche.- 29. Endliche algebraische Erweiterung primärer Ringe.- 30 Konstruktiver Aufbau primärer zerlegbarer Ringe.- 31. Die perfekten Hüllen der Integritätsbereiche mit Z.P.I.- 32. Erweiterung eines einartigen Integritätsbereichs zum ganz abgeschlossenen Ring.- 33. Normensätze.- 34. Diskriminantensätze.- 35. Verallgemeinerter Diskriminantensatz. Endlichkeitsprobleme.- 5. Bewertungstheorie.- 36. Bewertungsringe.- 37. Hauptordnungen.- 38. Z.P.E.-Ringe.- 39. Abschließung einesO-Rings.- 40. Allgemeine Bewertungsringe.- 41. Idealtheorie der Bewertungsringe.- 42. Bewertungen endlicher Erweiterungskörper eines "Grundkörpers"..- 6. V-Ideale und A-Ideale. Verhalten der Primideale bei Ringerweiterungen.- 43. V-Ideale.- 44. Unendliche algebraische Zahlkörper.- 45. Polynomringsätze und Permanenzsätze.- 46. Multiplikationsringe und A -Ideale.- 47. Einordnung des A -Prozesses in die Bewertungstheorie.- 48. Der Permanenzsatz der Primideale.- 49. Zusammenhang zwischen den Primidealen verschiedener Ringe mit gleichem Quotientenkörper.- 50. Divisoren zweiter Art.- Anhang: Bemerkungen zur Terminologie.
1. Grundlagen und Ausgangspunkte.- 1. Gruppen mit Operatoren und Ideale.- 2. Prim- und Primärideale. Polynomringe.- 3. Der Zerlegungssatz in abstrakten Ringen.- 4. Zahlentheoretische Grundlagen der Ideal theorie.- 5. Ganz abgeschlossene Integritätsbereiche.- 2. Abstrakte additive Idealtheorie.- 6. Isolierte Komponentenideale.- 7. Quotientenringe.- 8. Teilerfremde Ideale. Direkte Summen.- 9. Einartige Nullteilerringe.- 10. Einartige Integritätsbereiche.- 11. Operatorgruppen.- 12. Elementarteilergruppen.- 13. Primäre (Nullteiler-) Ringe.- 14. Additive Theorie der 0-Ringe.- 15. Prim- und Primäridealketten in O-Ringen.- 3. Polynomringe.- 16. Integritätsbereiche von endlichem Transzendenzgrad.- 17. Endliche Integritätsbereiche und Polynomringe. Ungemischtheits-sätze.- 18. Allgemeine und spezielle Nullstellen eines Polynomideals.- 19. Nullstellentheorie der Potenzreihenideale.- 20. Das "Rechnen" mit Polynomidealen.- 21. Gruppentheorie der Polynomideale.- 22. Eliminationstheorie.- 23. Der Bézoutsche Satz und die Hentzeltschen Nullstellensätze.- 24. Hilberts Funktion.- 25. Das inverse System.- 26. Die Multiplizitätstheorie von van der Waerden.- 27. Der Grad einer Mannigfaltigkeit und der "allgemeine" BézouTsche Satz.- 28. Zweifach projektive Räume.- 4. Einartige Bereiche.- 29. Endliche algebraische Erweiterung primärer Ringe.- 30 Konstruktiver Aufbau primärer zerlegbarer Ringe.- 31. Die perfekten Hüllen der Integritätsbereiche mit Z.P.I.- 32. Erweiterung eines einartigen Integritätsbereichs zum ganz abgeschlossenen Ring.- 33. Normensätze.- 34. Diskriminantensätze.- 35. Verallgemeinerter Diskriminantensatz. Endlichkeitsprobleme.- 5. Bewertungstheorie.- 36. Bewertungsringe.- 37. Hauptordnungen.- 38. Z.P.E.-Ringe.- 39. Abschließung einesO-Rings.- 40. Allgemeine Bewertungsringe.- 41. Idealtheorie der Bewertungsringe.- 42. Bewertungen endlicher Erweiterungskörper eines "Grundkörpers"..- 6. V-Ideale und A-Ideale. Verhalten der Primideale bei Ringerweiterungen.- 43. V-Ideale.- 44. Unendliche algebraische Zahlkörper.- 45. Polynomringsätze und Permanenzsätze.- 46. Multiplikationsringe und A -Ideale.- 47. Einordnung des A -Prozesses in die Bewertungstheorie.- 48. Der Permanenzsatz der Primideale.- 49. Zusammenhang zwischen den Primidealen verschiedener Ringe mit gleichem Quotientenkörper.- 50. Divisoren zweiter Art.- Anhang: Bemerkungen zur Terminologie.