14,99 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
  • Format: PDF

La discesa infinita è un metodo dimostrativo per assurdo, usato nella teoria dei numeri e applicabile nel caso di proprietà valide soltanto per gli interi positivi. Il metodo permette di affermare che: se una determinata proprietà è soddisfatta da un numero intero positivo, essa non può essere soddisfatta da un numero intero positivo più piccolo. In altri termini, alcune proprietà o relazioni, se applicate ai numeri interi positivi, sono impossibili. Infatti, supposto che siano valide per qualsiasi numero esse dovrebbero essere valide per numeri più piccoli, da ciò, per numeri ancora più…mehr

Produktbeschreibung
La discesa infinita è un metodo dimostrativo per assurdo, usato nella teoria dei numeri e applicabile nel caso di proprietà valide soltanto per gli interi positivi. Il metodo permette di affermare che: se una determinata proprietà è soddisfatta da un numero intero positivo, essa non può essere soddisfatta da un numero intero positivo più piccolo. In altri termini, alcune proprietà o relazioni, se applicate ai numeri interi positivi, sono impossibili. Infatti, supposto che siano valide per qualsiasi numero esse dovrebbero essere valide per numeri più piccoli, da ciò, per numeri ancora più piccoli, e così via all’infinito. Ma tale processo non può essere applicato ai numeri interi positivi in quanto essi non possono decrescere per un’infinità di successivi passaggi. In breve: se vogliamo dimostrare che una certa proposizione p è falsa, si suppone che essa sia vera per un certo n, se è valida anche per un m < n allora la proposizione p è sempre falsa; infatti, ripetendo il ragionamento, esisterebbe un altro numero k < m < n per cui la p risulterebbe vera, ma questo è un assurdo e quindi la p è falsa. Come vedremo più avanti, questo tipo di ragionamento fu inventato da Pierre de Fermat per dimostrare il caso particolare n = 4 del suo famoso teorema.

Dall'introduzione di Rolando Zucchini