36,99 €
Statt 47,95 €**
36,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
payback
0 °P sammeln
36,99 €
Statt 47,95 €**
36,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
Als Download kaufen
Statt 47,95 €****
36,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar
payback
0 °P sammeln
Jetzt verschenken
Statt 47,95 €****
36,99 €
inkl. MwSt.
**Preis der gedruckten Ausgabe (Broschiertes Buch)
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
  • Format: PDF

Master's Thesis from the year 2019 in the subject Engineering - Power Engineering, , language: English, abstract: World population has reached 7 billion people in 2013 and there has been an increase in energy consumption, especially in emerging countries. In 2050 it will be more than 9 billion people living on the planet. Because of this, there has been a rapid increase in CO2 concentration levels, so the average planet temperature is rising, causing a greenhouse effect, as the CO2 is trapping in the heat and not releasing it. Consequently, ocean levels are rising, because of the shrinking…mehr

Produktbeschreibung
Master's Thesis from the year 2019 in the subject Engineering - Power Engineering, , language: English, abstract: World population has reached 7 billion people in 2013 and there has been an increase in energy consumption, especially in emerging countries. In 2050 it will be more than 9 billion people living on the planet. Because of this, there has been a rapid increase in CO2 concentration levels, so the average planet temperature is rising, causing a greenhouse effect, as the CO2 is trapping in the heat and not releasing it. Consequently, ocean levels are rising, because of the shrinking polar ice caps. We also have seen an increase in the frequency of extreme atmosphere events around the globe. The refrigeration industry has contributed a lot to the global ozone depletion and global warming. To reduce the environmental impact by the heating, ventilation, air conditioning and refrigeration industry - both commercial and domestic - there is an urgent need to look for solutions that are both ozone friendly and CO2 friendly (greenhouse effect friendly). Eradicating the damage to the environment has encouraged the industrial and commercial refrigeration industry to investigate refrigerant alternatives that reduce the environmental impact although a good transition to them will also depend on the training that technicians acquire, as well as the understanding of the current and future benefits for the companies and the end users. This thesis aims at such a system which is both above mentioned. Once such a system is designed, it is of the utmost importance to test it and compare it with the systems that are being used currently to assess the benefits of using such system. The thesis has a focus on the liquid cooling systems such as water coolers and small commercial systems that help attain cooling of the liquids to a set temperature. In this thesis, the improvement of energy consumption and environmental degradation prevention is attained by switching the refrigerant used from R134a (current) to R290 (Propane) which is a natural refrigerant and Hydro Carbon Blend which is a mixture of refrigerants but is safer and environmentally friendlier. A comparison of both systems is done against the current system in terms of efficiency, energy consumption and chemical properties with respect to global warming potential and ozone depletion potential and ultimately proven that natural refrigerants and HC Blends are the refrigerants of the future.

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.