29,99 €
29,99 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
29,99 €
29,99 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
Als Download kaufen
29,99 €
inkl. MwSt.
Sofort per Download lieferbar
payback
0 °P sammeln
Jetzt verschenken
29,99 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
0 °P sammeln
  • Format: ePub

Apache Arrow is an open source, columnar in-memory data format designed for efficient data processing and analytics. This book harnesses the author's 15 years of experience to show you a standardized way to work with tabular data across various programming languages and environments, enabling high-performance data processing and exchange.
This updated second edition gives you an overview of the Arrow format, highlighting its versatility and benefits through real-world use cases. It guides you through enhancing data science workflows, optimizing performance with Apache Parquet and Spark, and
…mehr

  • Geräte: eReader
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 9.14MB
  • FamilySharing(5)
Produktbeschreibung
Apache Arrow is an open source, columnar in-memory data format designed for efficient data processing and analytics. This book harnesses the author's 15 years of experience to show you a standardized way to work with tabular data across various programming languages and environments, enabling high-performance data processing and exchange.
This updated second edition gives you an overview of the Arrow format, highlighting its versatility and benefits through real-world use cases. It guides you through enhancing data science workflows, optimizing performance with Apache Parquet and Spark, and ensuring seamless data translation. You'll explore data interchange and storage formats, and Arrow's relationships with Parquet, Protocol Buffers, FlatBuffers, JSON, and CSV. You'll also discover Apache Arrow subprojects, including Flight, SQL, Database Connectivity, and nanoarrow. You'll learn to streamline machine learning workflows, use Arrow Dataset APIs, and integrate with popular analytical data systems such as Snowflake, Dremio, and DuckDB. The latter chapters provide real-world examples and case studies of products powered by Apache Arrow, providing practical insights into its applications.
By the end of this book, you'll have all the building blocks to create efficient and powerful analytical services and utilities with Apache Arrow.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Matthew Topol is a member of the Apache Arrow Project Management Committee (PMC) and a staff software engineer at Voltron Data, Inc. Matt has worked in infrastructure, application development, and large-scale distributed system analytical processing for financial data. At Voltron Data, Matt's primary responsibilities have been working on and enhancing the Apache Arrow libraries and associated sub-projects. In his spare time, Matt likes to bash his head against a keyboard, develop and run delightfully demented fantasy games for his victims-er-friends, and share his knowledge and experience with anyone interested enough to listen.