This books presents a lifelong learning approach where motion patterns can be learned incrementally, and in parallel with prediction. The approach is based on a novel extension to hidden Markov models, and the main contribution presented in this book, called growing hidden Markov models, which gives us the ability to learn incrementally both the parameters and the structure of the model. The proposed approach has been extensively validated with synthetic and real trajectory data. In our experiments our approach consistently learned motion models that were more compact and accurate than those produced by two other state-of-the-art techniques, confirming the viability of lifelong learning approaches to build human behavior models.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.