67,95 €
67,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
34 °P sammeln
67,95 €
67,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
34 °P sammeln
Als Download kaufen
67,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
34 °P sammeln
Jetzt verschenken
67,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
34 °P sammeln
  • Format: ePub

Heavy tailed data appears frequently in social science, internet traffic, insurance and finance. Statistical inference has been studied for many years, which includes recent bias-reduction estimation for tail index and high quantiles with applications in risk management, empirical likelihood based interval estimation for tail index and high quantiles, hypothesis tests for heavy tails, the choice of sample fraction in tail index and high quantile inference. These results for independent data, dependent data, linear time series and nonlinear time series are scattered in different statistics…mehr

Produktbeschreibung
Heavy tailed data appears frequently in social science, internet traffic, insurance and finance. Statistical inference has been studied for many years, which includes recent bias-reduction estimation for tail index and high quantiles with applications in risk management, empirical likelihood based interval estimation for tail index and high quantiles, hypothesis tests for heavy tails, the choice of sample fraction in tail index and high quantile inference. These results for independent data, dependent data, linear time series and nonlinear time series are scattered in different statistics journals. Inference for Heavy-Tailed Data Analysis puts these methods into a single place with a clear picture on learning and using these techniques.

  • Contains comprehensive coverage of new techniques of heavy tailed data analysis
  • Provides examples of heavy tailed data and its uses
  • Brings together, in a single place, a clear picture on learning and using these techniques

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Dr Liang Peng is based at the Department of Risk Management and Insurance at Robinson College of Business, Georgia State University, USADr Yongcheng Qi is based at the Department of Mathematics and Statistics at the University of Minnesota, USA.