Martyn R. Dixon, Leonid A. Kurdachenko, Igor Ya. Subbotin
Infinite Groups (eBook, ePUB)
A Roadmap to Selected Classical Areas
183,95 €
183,95 €
inkl. MwSt.
Sofort per Download lieferbar
92 °P sammeln
183,95 €
Als Download kaufen
183,95 €
inkl. MwSt.
Sofort per Download lieferbar
92 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
183,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
92 °P sammeln
Martyn R. Dixon, Leonid A. Kurdachenko, Igor Ya. Subbotin
Infinite Groups (eBook, ePUB)
A Roadmap to Selected Classical Areas
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book covers a broad swath of the theory of infinite groups, without giving proofs, but with all the concepts and auxiliary results necessary for understanding such results. In other words, this book is an extended directory, or a guide, to some of the more established areas of infinite groups.
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
- Größe: 1.1MB
This book covers a broad swath of the theory of infinite groups, without giving proofs, but with all the concepts and auxiliary results necessary for understanding such results. In other words, this book is an extended directory, or a guide, to some of the more established areas of infinite groups.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 410
- Erscheinungstermin: 26. Januar 2023
- Englisch
- ISBN-13: 9781000848359
- Artikelnr.: 66982430
- Verlag: Taylor & Francis
- Seitenzahl: 410
- Erscheinungstermin: 26. Januar 2023
- Englisch
- ISBN-13: 9781000848359
- Artikelnr.: 66982430
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Dr. Martyn R. Dixon is a Professor of Mathematics at the University of Alabama. He did undergraduate work at the University of Manchester and obtained his Ph. D. at the University of Warwick under the guidance of Dr. Stewart Stonehewer. His main interests in group theory include ranks of groups, infinite dimensional linear groups, permutable subgroups and locally finite groups. He has written several books and numerous articles concerned with group theory. He has been a visiting professor at various institutions including the University of Kentucky, Bucknell University, Università degli Studi di Trento, the University of Napoli, the University of Salerno, the University of Valencia and the University of Zarogoza.
Dr. Leonid A. Kurdachenko
is a Distinguished Professor in the Department of Geometry and Algebra of Oles Honchar Dnipro National University. He is one of the most productive group theorists. His list of publications consists of more than 250 journal articles published in major mathematics journals in many countries around the globe. He is an author of more than a dozen books published by such prestigious publishers as John Wiley and Sons (USA), Birkhäuser (Swiss), Word Scientific (United Kingdom), and others. He served as an invited speaker and visiting professor at many international conferences and universities. His research activities have been supported by several prestigious international grants.
Dr. Igor Ya. Subbotin
is a Professor at National University, USA. His main area of research is algebra. His list of publications includes more than 170 articles in algebra published in major mathematics journals around the globe. He has also authored more than 50 articles in mathematics education dedicated mostly to the theoretical basis of some topics in high school and college mathematics. Among his publications there are several books published by such major publishing companies as Wiley and Sons, World Scientific, Birkhäuser, and others. His research in algebra has been supported by several international prestigious grants, including grants issued by FEDER funds from European Union, The National Research Committee of Spain and Aragon, Volkswagen Foundation (VolkswagenStiftung), and others.
Dr. Leonid A. Kurdachenko
is a Distinguished Professor in the Department of Geometry and Algebra of Oles Honchar Dnipro National University. He is one of the most productive group theorists. His list of publications consists of more than 250 journal articles published in major mathematics journals in many countries around the globe. He is an author of more than a dozen books published by such prestigious publishers as John Wiley and Sons (USA), Birkhäuser (Swiss), Word Scientific (United Kingdom), and others. He served as an invited speaker and visiting professor at many international conferences and universities. His research activities have been supported by several prestigious international grants.
Dr. Igor Ya. Subbotin
is a Professor at National University, USA. His main area of research is algebra. His list of publications includes more than 170 articles in algebra published in major mathematics journals around the globe. He has also authored more than 50 articles in mathematics education dedicated mostly to the theoretical basis of some topics in high school and college mathematics. Among his publications there are several books published by such major publishing companies as Wiley and Sons, World Scientific, Birkhäuser, and others. His research in algebra has been supported by several international prestigious grants, including grants issued by FEDER funds from European Union, The National Research Committee of Spain and Aragon, Volkswagen Foundation (VolkswagenStiftung), and others.
1. Important Subgroups. 1.1. Some Important Series in Groups and Subgroups Defined by these Series. 1.2. Classes of Groups Defined by Series of Subgroups. 1.3. Radicable Groups. 1.4. Something from the Theory of Modules. 1.5. The 0-Rank and p-rank of Abelian Groups. 1.6. The Frattini Subgroup of a Group. 1.7. Linear Groups. 1.8. Residually X-Groups. 2. Finitely Generated Groups. 2.1. The Generalized Burnside Problem. 2.2. The Burnside Problem for Groups of Finite Exponent. 2.3. The Restricted Burnside Problem. 2.4. Growth Functions on Finitely Generated Groups. 2.5. Finitely Presented Groups. 2.6. Groups with the Maximal Condition for all Subgroups. 3. Finiteness Conditions. 3.1 The Minimal Condition on Certain Systems of Subgroups. 3.2. The Minimal Condition on Normal Subgroups. 3.3. Artinian and Related Modules over some Group Rings. 3.4. Minimax Groups. 3.5. The Weak Minimal Condition. 3.6. The Weak Maximal Condition. 4. Ranks of Groups. 4.1. Finite Special Rank and Finite Section p-Rank. 4.2. Finite 0-Rank. 4.3. The Connections Between the Various Rank Conditions I. 4.4. Finite Section Rank. 4.5. Bounded Section Rank. 4.6. The Connections Between the Various Rank Conditions II. 4.7. Finitely Generated Groups. 4.8. Systems of Subgroups Satisfying Rank Conditions. 4.9. Some Residual Systems. 5. Conjugacy Classes. 5.1. Around "Schur's Theorem", Central-By-Finite Groups and Related Topics. 5.2 Bounded Conjugacy Classes, Finite-By-Abelian Groups and Related Classes. 5.3. Groups with Finite Classes of Conjugate Elements. 5.4. Some Concluding Remarks. 6. Generalized Normal Subgroups and their Opposites. 6.1. Groups Whose Subgroups are Normal, Permutable or Subnormal. 6.2. Groups having a Large Family of Normal Subgroups. 6.3. Groups having a Large Family of Subnormal Subgroups. 6.4. Pairs of Opposite Subgroups. 6.5. Transitively Normal Subgroups. 6.6. The Norm of a Group, The Wielandt Subgroup and Related Topics. 6.7. The Norm of a Group and the Quasicentralizer Condition. 7. Locally Finite Groups. 7.1. Preliminaries. 7.2. Large Locally Finite Groups. 7.3. Simple Locally Finite Groups. 7.4. Existentially Closed Groups. 7.5. Centralizers in Locally Finite Groups. 7.6. Sylow Theory in Locally Finite Groups. 7.7. Conjugacy of Sylow Subgroups. 7.8. Unconventional Sylow Theories. 7.9. Saturated Formations and Fitting Classes. 7.10. Barely Transitive Groups.
1. Important Subgroups. 1.1. Some Important Series in Groups and Subgroups Defined by these Series. 1.2. Classes of Groups Defined by Series of Subgroups. 1.3. Radicable Groups. 1.4. Something from the Theory of Modules. 1.5. The 0-Rank and p-rank of Abelian Groups. 1.6. The Frattini Subgroup of a Group. 1.7. Linear Groups. 1.8. Residually X-Groups. 2. Finitely Generated Groups. 2.1. The Generalized Burnside Problem. 2.2. The Burnside Problem for Groups of Finite Exponent. 2.3. The Restricted Burnside Problem. 2.4. Growth Functions on Finitely Generated Groups. 2.5. Finitely Presented Groups. 2.6. Groups with the Maximal Condition for all Subgroups. 3. Finiteness Conditions. 3.1 The Minimal Condition on Certain Systems of Subgroups. 3.2. The Minimal Condition on Normal Subgroups. 3.3. Artinian and Related Modules over some Group Rings. 3.4. Minimax Groups. 3.5. The Weak Minimal Condition. 3.6. The Weak Maximal Condition. 4. Ranks of Groups. 4.1. Finite Special Rank and Finite Section p-Rank. 4.2. Finite 0-Rank. 4.3. The Connections Between the Various Rank Conditions I. 4.4. Finite Section Rank. 4.5. Bounded Section Rank. 4.6. The Connections Between the Various Rank Conditions II. 4.7. Finitely Generated Groups. 4.8. Systems of Subgroups Satisfying Rank Conditions. 4.9. Some Residual Systems. 5. Conjugacy Classes. 5.1. Around "Schur's Theorem", Central-By-Finite Groups and Related Topics. 5.2 Bounded Conjugacy Classes, Finite-By-Abelian Groups and Related Classes. 5.3. Groups with Finite Classes of Conjugate Elements. 5.4. Some Concluding Remarks. 6. Generalized Normal Subgroups and their Opposites. 6.1. Groups Whose Subgroups are Normal, Permutable or Subnormal. 6.2. Groups having a Large Family of Normal Subgroups. 6.3. Groups having a Large Family of Subnormal Subgroups. 6.4. Pairs of Opposite Subgroups. 6.5. Transitively Normal Subgroups. 6.6. The Norm of a Group, The Wielandt Subgroup and Related Topics. 6.7. The Norm of a Group and the Quasicentralizer Condition. 7. Locally Finite Groups. 7.1. Preliminaries. 7.2. Large Locally Finite Groups. 7.3. Simple Locally Finite Groups. 7.4. Existentially Closed Groups. 7.5. Centralizers in Locally Finite Groups. 7.6. Sylow Theory in Locally Finite Groups. 7.7. Conjugacy of Sylow Subgroups. 7.8. Unconventional Sylow Theories. 7.9. Saturated Formations and Fitting Classes. 7.10. Barely Transitive Groups.