70,99 €
70,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
70,99 €
Als Download kaufen
70,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
70,99 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
0 °P sammeln
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
First published by Wiley in 1978, this book is being re-issued with a new Preface by the author. The roots of the book lie in the writings of RA Fisher both as concerns results and the general stance to statistical science, and this stance was the determining factor in the author's selection of topics. His treatise brings together results on aspects of statistical information, notably concerning likelihood functions, plausibility functions, ancillarity, and sufficiency, and on exponential families of probability distributions.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 9.23MB
Andere Kunden interessierten sich auch für
- Uwe KüchlerExponential Families of Stochastic Processes (eBook, PDF)113,95 €
- Masafumi AkahiraStatistical Estimation for Truncated Exponential Families (eBook, PDF)40,95 €
- Rolf SundbergStatistical Modelling by Exponential Families (eBook, PDF)23,95 €
- Adelchi AzzaliniStatistical Inference Based on the likelihood (eBook, PDF)46,95 €
- Janine IllianStatistical Analysis and Modelling of Spatial Point Patterns (eBook, PDF)119,99 €
- Alan PankratzForecasting with Dynamic Regression Models (eBook, PDF)236,99 €
- J. Edward JacksonA User's Guide to Principal Components (eBook, PDF)149,99 €
-
-
-
First published by Wiley in 1978, this book is being re-issued with a new Preface by the author. The roots of the book lie in the writings of RA Fisher both as concerns results and the general stance to statistical science, and this stance was the determining factor in the author's selection of topics. His treatise brings together results on aspects of statistical information, notably concerning likelihood functions, plausibility functions, ancillarity, and sufficiency, and on exponential families of probability distributions.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley
- Seitenzahl: 248
- Erscheinungstermin: 7. Mai 2014
- Englisch
- ISBN-13: 9781118857373
- Artikelnr.: 41004337
- Verlag: Wiley
- Seitenzahl: 248
- Erscheinungstermin: 7. Mai 2014
- Englisch
- ISBN-13: 9781118857373
- Artikelnr.: 41004337
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Ole Barndorff-Nielsen is a renowned Danish statistician, Professor Emeritus at Aarhus University at the Thiele Centre for Applied Mathematics in Natural Science and affiliated with the Center for Research in Econometric Analysis of Time Series (CREATES). Since 2008 he has also been affiliated to Institute of Advanced Studies, Technical University Munich.
CHAPTER 1 INTRODUCTION 1
1.1 Introductory remarks and outline 1
1.2 Some mathematical prerequisites 2
1.3 Parametric models 7
Part I Lods functions and inferential separation
CHAPTER 2 LIKELIHOOD AND PLAUSIBILITY 11
2.1 Universality 11
2.2 Likelihood functions and plausibility functions 12
2.3 Complements 16
2.4 Notes 16
CHAPTER 3 SAMPLE-HYPOTHESIS DUALITY AND LODS FUNCTIONS 19
3.1 Lods functions 20
3.2 Prediction functions 23
3.3 Independence 26
3.4 Complements 30
3.5 Notes 31
CHAPTER 4 LOGIC OF INFERENTIAL SEPARATION. ANCILLARITY AND SUFFICIENCY 33
4.1 On inferential separation. Ancillarity and sufficiency 33
4.2 B-sufficiency and B-ancillarity 38
4.3 Nonformation 46
4.4 S-, G-, and M-ancillarity and -sufficiency 49
4.5 Quasi-ancillarity and Quasi-sufficiency 57
4.6 Conditional and unconditional plausibility functions 58
4.7 Complements 62
4.8 Notes 68
Part II Convex analysis, unimodality, and Laplace transforms
CHAPTER 5 CONVEX ANALYSIS 73
5.1 Convex sets 73
5.2 Convex functions 76
5.3 Conjugate convex functions 80
5.4 Differential theory 84
5.5 Complements 89
CHAPTER 6 LOG-CONCAVITY AND UNIMODALITY 93
6.1 Log-concavity 93
6.2 Unimodality of continuous-type distributions 96
6.3 Unimodality of discrete-type distributions 98
6.4 Complements 100
CHAPTER 7 LAPLACE TRANSFORMS 103
7.1 The Laplace transform 103
7.2 Complements 107
Part III Exponential families
CHAPTER 8 INTRODUCTORY THEORY OF EXPONENTIAL FAMILIES 111
8.1 First properties 111
8.2 Derived families 125
8.3 Complements 133
8.4 Notes 136
CHAPTER 9 DUALITY AND EXPONENTIAL FAMILIES 139
9.1 Convex duality and exponential families 140
9.2 Independence and exponential families 147
9.3 Likelihood functions for full exponential families 150
9.4 Likelihood functions for convex exponential families 158
9.5 Probability functions for exponential families 164
9.6 Plausibility functions for full exponential families 168
9.7 Prediction functions for full exponential families 170
9.8 Complements 173
9.9 Notes 190
CHAPTER 10 INFERENTIAL SEPARATION AND EXPONENTIAL FAMILIES 191
10.1 Quasi-ancillarity and exponential families 191
10.2 Cuts in general exponential families 196
10.3 Cuts in discrete-type exponential families 202
10.4 S-ancillarity and exponential families 208
10.5 M-ancillarity and exponential families 211
10.6 Complement 218
10.7 Notes 219
References 221
Author index 231
Subject index 233
1.1 Introductory remarks and outline 1
1.2 Some mathematical prerequisites 2
1.3 Parametric models 7
Part I Lods functions and inferential separation
CHAPTER 2 LIKELIHOOD AND PLAUSIBILITY 11
2.1 Universality 11
2.2 Likelihood functions and plausibility functions 12
2.3 Complements 16
2.4 Notes 16
CHAPTER 3 SAMPLE-HYPOTHESIS DUALITY AND LODS FUNCTIONS 19
3.1 Lods functions 20
3.2 Prediction functions 23
3.3 Independence 26
3.4 Complements 30
3.5 Notes 31
CHAPTER 4 LOGIC OF INFERENTIAL SEPARATION. ANCILLARITY AND SUFFICIENCY 33
4.1 On inferential separation. Ancillarity and sufficiency 33
4.2 B-sufficiency and B-ancillarity 38
4.3 Nonformation 46
4.4 S-, G-, and M-ancillarity and -sufficiency 49
4.5 Quasi-ancillarity and Quasi-sufficiency 57
4.6 Conditional and unconditional plausibility functions 58
4.7 Complements 62
4.8 Notes 68
Part II Convex analysis, unimodality, and Laplace transforms
CHAPTER 5 CONVEX ANALYSIS 73
5.1 Convex sets 73
5.2 Convex functions 76
5.3 Conjugate convex functions 80
5.4 Differential theory 84
5.5 Complements 89
CHAPTER 6 LOG-CONCAVITY AND UNIMODALITY 93
6.1 Log-concavity 93
6.2 Unimodality of continuous-type distributions 96
6.3 Unimodality of discrete-type distributions 98
6.4 Complements 100
CHAPTER 7 LAPLACE TRANSFORMS 103
7.1 The Laplace transform 103
7.2 Complements 107
Part III Exponential families
CHAPTER 8 INTRODUCTORY THEORY OF EXPONENTIAL FAMILIES 111
8.1 First properties 111
8.2 Derived families 125
8.3 Complements 133
8.4 Notes 136
CHAPTER 9 DUALITY AND EXPONENTIAL FAMILIES 139
9.1 Convex duality and exponential families 140
9.2 Independence and exponential families 147
9.3 Likelihood functions for full exponential families 150
9.4 Likelihood functions for convex exponential families 158
9.5 Probability functions for exponential families 164
9.6 Plausibility functions for full exponential families 168
9.7 Prediction functions for full exponential families 170
9.8 Complements 173
9.9 Notes 190
CHAPTER 10 INFERENTIAL SEPARATION AND EXPONENTIAL FAMILIES 191
10.1 Quasi-ancillarity and exponential families 191
10.2 Cuts in general exponential families 196
10.3 Cuts in discrete-type exponential families 202
10.4 S-ancillarity and exponential families 208
10.5 M-ancillarity and exponential families 211
10.6 Complement 218
10.7 Notes 219
References 221
Author index 231
Subject index 233
CHAPTER 1 INTRODUCTION 1
1.1 Introductory remarks and outline 1
1.2 Some mathematical prerequisites 2
1.3 Parametric models 7
Part I Lods functions and inferential separation
CHAPTER 2 LIKELIHOOD AND PLAUSIBILITY 11
2.1 Universality 11
2.2 Likelihood functions and plausibility functions 12
2.3 Complements 16
2.4 Notes 16
CHAPTER 3 SAMPLE-HYPOTHESIS DUALITY AND LODS FUNCTIONS 19
3.1 Lods functions 20
3.2 Prediction functions 23
3.3 Independence 26
3.4 Complements 30
3.5 Notes 31
CHAPTER 4 LOGIC OF INFERENTIAL SEPARATION. ANCILLARITY AND SUFFICIENCY 33
4.1 On inferential separation. Ancillarity and sufficiency 33
4.2 B-sufficiency and B-ancillarity 38
4.3 Nonformation 46
4.4 S-, G-, and M-ancillarity and -sufficiency 49
4.5 Quasi-ancillarity and Quasi-sufficiency 57
4.6 Conditional and unconditional plausibility functions 58
4.7 Complements 62
4.8 Notes 68
Part II Convex analysis, unimodality, and Laplace transforms
CHAPTER 5 CONVEX ANALYSIS 73
5.1 Convex sets 73
5.2 Convex functions 76
5.3 Conjugate convex functions 80
5.4 Differential theory 84
5.5 Complements 89
CHAPTER 6 LOG-CONCAVITY AND UNIMODALITY 93
6.1 Log-concavity 93
6.2 Unimodality of continuous-type distributions 96
6.3 Unimodality of discrete-type distributions 98
6.4 Complements 100
CHAPTER 7 LAPLACE TRANSFORMS 103
7.1 The Laplace transform 103
7.2 Complements 107
Part III Exponential families
CHAPTER 8 INTRODUCTORY THEORY OF EXPONENTIAL FAMILIES 111
8.1 First properties 111
8.2 Derived families 125
8.3 Complements 133
8.4 Notes 136
CHAPTER 9 DUALITY AND EXPONENTIAL FAMILIES 139
9.1 Convex duality and exponential families 140
9.2 Independence and exponential families 147
9.3 Likelihood functions for full exponential families 150
9.4 Likelihood functions for convex exponential families 158
9.5 Probability functions for exponential families 164
9.6 Plausibility functions for full exponential families 168
9.7 Prediction functions for full exponential families 170
9.8 Complements 173
9.9 Notes 190
CHAPTER 10 INFERENTIAL SEPARATION AND EXPONENTIAL FAMILIES 191
10.1 Quasi-ancillarity and exponential families 191
10.2 Cuts in general exponential families 196
10.3 Cuts in discrete-type exponential families 202
10.4 S-ancillarity and exponential families 208
10.5 M-ancillarity and exponential families 211
10.6 Complement 218
10.7 Notes 219
References 221
Author index 231
Subject index 233
1.1 Introductory remarks and outline 1
1.2 Some mathematical prerequisites 2
1.3 Parametric models 7
Part I Lods functions and inferential separation
CHAPTER 2 LIKELIHOOD AND PLAUSIBILITY 11
2.1 Universality 11
2.2 Likelihood functions and plausibility functions 12
2.3 Complements 16
2.4 Notes 16
CHAPTER 3 SAMPLE-HYPOTHESIS DUALITY AND LODS FUNCTIONS 19
3.1 Lods functions 20
3.2 Prediction functions 23
3.3 Independence 26
3.4 Complements 30
3.5 Notes 31
CHAPTER 4 LOGIC OF INFERENTIAL SEPARATION. ANCILLARITY AND SUFFICIENCY 33
4.1 On inferential separation. Ancillarity and sufficiency 33
4.2 B-sufficiency and B-ancillarity 38
4.3 Nonformation 46
4.4 S-, G-, and M-ancillarity and -sufficiency 49
4.5 Quasi-ancillarity and Quasi-sufficiency 57
4.6 Conditional and unconditional plausibility functions 58
4.7 Complements 62
4.8 Notes 68
Part II Convex analysis, unimodality, and Laplace transforms
CHAPTER 5 CONVEX ANALYSIS 73
5.1 Convex sets 73
5.2 Convex functions 76
5.3 Conjugate convex functions 80
5.4 Differential theory 84
5.5 Complements 89
CHAPTER 6 LOG-CONCAVITY AND UNIMODALITY 93
6.1 Log-concavity 93
6.2 Unimodality of continuous-type distributions 96
6.3 Unimodality of discrete-type distributions 98
6.4 Complements 100
CHAPTER 7 LAPLACE TRANSFORMS 103
7.1 The Laplace transform 103
7.2 Complements 107
Part III Exponential families
CHAPTER 8 INTRODUCTORY THEORY OF EXPONENTIAL FAMILIES 111
8.1 First properties 111
8.2 Derived families 125
8.3 Complements 133
8.4 Notes 136
CHAPTER 9 DUALITY AND EXPONENTIAL FAMILIES 139
9.1 Convex duality and exponential families 140
9.2 Independence and exponential families 147
9.3 Likelihood functions for full exponential families 150
9.4 Likelihood functions for convex exponential families 158
9.5 Probability functions for exponential families 164
9.6 Plausibility functions for full exponential families 168
9.7 Prediction functions for full exponential families 170
9.8 Complements 173
9.9 Notes 190
CHAPTER 10 INFERENTIAL SEPARATION AND EXPONENTIAL FAMILIES 191
10.1 Quasi-ancillarity and exponential families 191
10.2 Cuts in general exponential families 196
10.3 Cuts in discrete-type exponential families 202
10.4 S-ancillarity and exponential families 208
10.5 M-ancillarity and exponential families 211
10.6 Complement 218
10.7 Notes 219
References 221
Author index 231
Subject index 233