40,95 €
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
40,95 €
Als Download kaufen
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
20 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
40,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
20 °P sammeln
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book offers a new, theoretical approach to information dynamics, i.e., information processing in complex dynamical systems. The presentation establishes a consistent theoretical framework for the problem of discovering knowledge behind empirical, dynamical data and addresses applications in information processing and coding in dynamical systems. This will be an essential reference for those in neural computing, information theory, nonlinear dynamics and complex systems modeling.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 21.43MB
Andere Kunden interessierten sich auch für
- Nino BoccaraModeling Complex Systems (eBook, PDF)65,95 €
- Jiming LiuAutonomy Oriented Computing (eBook, PDF)40,95 €
- Adaptive Signal Processing (eBook, PDF)40,95 €
- Theory of Cryptography (eBook, PDF)40,95 €
- Madan SinghParallel Processing Techniques for Simulation (eBook, PDF)40,95 €
- Modeling, Control and Optimization of Complex Systems (eBook, PDF)73,95 €
- Manuel Fernández-MartínezFractal Dimension for Fractal Structures (eBook, PDF)81,95 €
-
-
-
This book offers a new, theoretical approach to information dynamics, i.e., information processing in complex dynamical systems. The presentation establishes a consistent theoretical framework for the problem of discovering knowledge behind empirical, dynamical data and addresses applications in information processing and coding in dynamical systems. This will be an essential reference for those in neural computing, information theory, nonlinear dynamics and complex systems modeling.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer New York
- Seitenzahl: 281
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461301271
- Artikelnr.: 43986894
- Verlag: Springer New York
- Seitenzahl: 281
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461301271
- Artikelnr.: 43986894
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Dr. Bernd Schürmann, Dozent an der Universität Kaiserslautern, verfügt über langjährige Lehrerfahrung im Grundstudium der Technischen Informatik sowie im Bereich der Fern(hoch)schulen.
l Introduction.- 2 Dynamical Systems: An Overview 7.- 2.1 Deterministic Dynamical Systems.- 2.3 Statistical Time-Series Analysis.- 3 Statistical Structure Extraction in Dynamical Systems: Parametric Formulation.- 3.1 Basic Concepts of Information Theory.- 3.2 Parametric Estimation : Maximum-Likelihood Principle.- 3.3 Linear Models.- 3.4 Nonlinear Models.- 3.5 Density Estimation.- 3.6 Information-Theoretic Approach to Time-Series Modeling: Redundancy Extraction.- 4 Applications: Parametric Characterization of Time Series.- 4.1 Feedforward Learning : Chaotic Dynamics.- 4.2 Recurrent Learning : Chaotic Dynamics.- 4.3 Dynamical Overtraining and Lyapunov Penalty Term.- 4.4 Feedforward and Recurrent Learning of Biomedical Data.- 4.5 Unsupervised Redundancy-Extraction-Based Modeling: Chaotic Dynamics.- 4.6 Unsupervised Redundancy Extraction Modeling: Biomedical Data.- 5 Statistical Structure Extraction in Dynamical Systems: Nonparametric Formulation.- 5.1 Nonparametric Detection ofStatistical Dependencies in Time Series.- 5.2 Nonparametric Characterization of Dynamics: The Information Flow Concept.- 5.3 Information Flow and Coarse Graining.- 6 Applications: Nonparametric Characterization of Time Series.- 6.1 Detecting Nonlinear Correlations in Time Series.- 6.2 Nonparametric Analysis of Time Series : Optimal Delay Selection.- 6.3 Determining the Information Flow ofDynamical Systems from Continuous Probability Distributions.- 6.4 Dynamical Characterization ofTime Signals: The Integrated Information Flow.- 6.5 Information Flow and Coarse Graining: Numerical Experiments.- 7 Statistical Structure Extraction in Dynamical Systems: Semiparametric Formulation.- 7.1 Markovian Characterization of Univariate Time Series.- 7.2 Markovian Characterization of Multivariate Time Series.- 8 Applications: Semiparametric Characterization of Time Series.- 8.1 Univariate Time Series : Artificial Data.- 8.2 Univariate Time Series: Real-World Data.- 8.3 Multivariate Time Series: Artificial Data.- 8.4 Multivariate Time Series : Tumor Detection in EEG Time Series.- 9 Information Processing and Coding in Spatiotemporal Dynamical Systems: Spiking Networks.- 9.1 Spiking Neurons.- 9.2 Information Processing and Coding in Single Spiking Neurons.- 9.3 Information Processing and Coding in Networks of Spiking Neurons.- 9.4 The Processing and Coding ofDynamical Systems.- 10 Applications: Information Processing and Coding in Spatiotemporal Dynamical Systems.- 10.1 The Binding Problem.- 10.2 Discrimination of Stimulus by Spiking Neural Networks.- 10.3 Numerical Experiments.- Epilogue.- Appendix A Chain Rules, Inequalities and Other Useful Theorems in Information Theory.- A.1 Chain Rules.- A.2 Fundamental Inequalities ofInformation Theory.- Appendix B Univariate and Multivariate Cumulants.- Appendix C Information Flow of Chaotic Systems: Thermodynamical Formulation.- Appendix D Generalized Discriminability by the Spike Response Model ofa Single Spiking Neuron: Analytical Results.- References.
l Introduction.- 2 Dynamical Systems: An Overview 7.- 2.1 Deterministic Dynamical Systems.- 2.3 Statistical Time-Series Analysis.- 3 Statistical Structure Extraction in Dynamical Systems: Parametric Formulation.- 3.1 Basic Concepts of Information Theory.- 3.2 Parametric Estimation : Maximum-Likelihood Principle.- 3.3 Linear Models.- 3.4 Nonlinear Models.- 3.5 Density Estimation.- 3.6 Information-Theoretic Approach to Time-Series Modeling: Redundancy Extraction.- 4 Applications: Parametric Characterization of Time Series.- 4.1 Feedforward Learning : Chaotic Dynamics.- 4.2 Recurrent Learning : Chaotic Dynamics.- 4.3 Dynamical Overtraining and Lyapunov Penalty Term.- 4.4 Feedforward and Recurrent Learning of Biomedical Data.- 4.5 Unsupervised Redundancy-Extraction-Based Modeling: Chaotic Dynamics.- 4.6 Unsupervised Redundancy Extraction Modeling: Biomedical Data.- 5 Statistical Structure Extraction in Dynamical Systems: Nonparametric Formulation.- 5.1 Nonparametric Detection ofStatistical Dependencies in Time Series.- 5.2 Nonparametric Characterization of Dynamics: The Information Flow Concept.- 5.3 Information Flow and Coarse Graining.- 6 Applications: Nonparametric Characterization of Time Series.- 6.1 Detecting Nonlinear Correlations in Time Series.- 6.2 Nonparametric Analysis of Time Series : Optimal Delay Selection.- 6.3 Determining the Information Flow ofDynamical Systems from Continuous Probability Distributions.- 6.4 Dynamical Characterization ofTime Signals: The Integrated Information Flow.- 6.5 Information Flow and Coarse Graining: Numerical Experiments.- 7 Statistical Structure Extraction in Dynamical Systems: Semiparametric Formulation.- 7.1 Markovian Characterization of Univariate Time Series.- 7.2 Markovian Characterization of Multivariate Time Series.- 8 Applications: Semiparametric Characterization of Time Series.- 8.1 Univariate Time Series : Artificial Data.- 8.2 Univariate Time Series: Real-World Data.- 8.3 Multivariate Time Series: Artificial Data.- 8.4 Multivariate Time Series : Tumor Detection in EEG Time Series.- 9 Information Processing and Coding in Spatiotemporal Dynamical Systems: Spiking Networks.- 9.1 Spiking Neurons.- 9.2 Information Processing and Coding in Single Spiking Neurons.- 9.3 Information Processing and Coding in Networks of Spiking Neurons.- 9.4 The Processing and Coding ofDynamical Systems.- 10 Applications: Information Processing and Coding in Spatiotemporal Dynamical Systems.- 10.1 The Binding Problem.- 10.2 Discrimination of Stimulus by Spiking Neural Networks.- 10.3 Numerical Experiments.- Epilogue.- Appendix A Chain Rules, Inequalities and Other Useful Theorems in Information Theory.- A.1 Chain Rules.- A.2 Fundamental Inequalities ofInformation Theory.- Appendix B Univariate and Multivariate Cumulants.- Appendix C Information Flow of Chaotic Systems: Thermodynamical Formulation.- Appendix D Generalized Discriminability by the Spike Response Model ofa Single Spiking Neuron: Analytical Results.- References.