Infrared and Raman Spectroscopy in Forensic Science (eBook, ePUB)
Redaktion: Chalmers, John M.; Hargreaves, Michael D.; Edwards, Howell G. M.
146,99 €
146,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
146,99 €
Als Download kaufen
146,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
146,99 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
0 °P sammeln
Infrared and Raman Spectroscopy in Forensic Science (eBook, ePUB)
Redaktion: Chalmers, John M.; Hargreaves, Michael D.; Edwards, Howell G. M.
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book will provide a survey of the major areas in which information derived from vibrational spectroscopy investigations and studies have contributed to the benefit of forensic science, either in a complementary or a unique way. This is highlighted by examples taken from real case studies and analyses of forensic relevance, which provide a focus for current and future applications and developments.
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 36.28MB
This book will provide a survey of the major areas in which information derived from vibrational spectroscopy investigations and studies have contributed to the benefit of forensic science, either in a complementary or a unique way. This is highlighted by examples taken from real case studies and analyses of forensic relevance, which provide a focus for current and future applications and developments.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 648
- Erscheinungstermin: 3. Januar 2012
- Englisch
- ISBN-13: 9781119962984
- Artikelnr.: 37351886
- Verlag: John Wiley & Sons
- Seitenzahl: 648
- Erscheinungstermin: 3. Januar 2012
- Englisch
- ISBN-13: 9781119962984
- Artikelnr.: 37351886
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
John Chalmers, recently completed post-doctoral research with Professor Edwards at the University of Bradford. He has just joined Litethru, a company based in Daresbury, involved in developing Raman instrumentation for non-invasive analysis. Howell Edwards is Director of Research in the School of Life Sciences at Bradford University. His studies in the application of Raman spectroscopy to biological / geological interfaces have been extended to a space environment and he was an adjunct scientist for the Mars Express Beagle 2 lander mission, and a contributor to the ESA FOTON 12-Biopan international consortium for the analysis of Martian lithic analogues. He has published over 430 research papers in Raman spectroscopy and is on the Editorial Advisory Boards of the Journal of Raman Spectroscopy, Spectrochimica Acta: Biomolecular Spectroscopy, the Internet Journal of Vibrational Spectroscopy and the Asian Journal of Spectroscopy. Currently, he has research collaborations with groups in Spain, France, Denmark, Germany, Australia, Brazil and the USA. He has lectured widely on Raman spectroscopy and its applications. Professor Edwards is a national committee member of the Molecular Spectroscopy Group of the Royal Society of Chemistry and also of the UK Astrobiology Panel. Mike Hargreaves is an independent consultant in the field of vibrational spectroscopy. He left ICI in 1997 after 22 years, serving as a Business Research Associate in the Science Support Group of ICI Technology. He held the position of chairman of the UK Infrared and Raman Discussion Group (IRDG) for a number of years and is current chairman of the RSC (Royal Society of Chemistry) Molecular Spectroscopy Subject Group. He is a member of the Association of British Spectroscopists (ABS) Trust, and is a Fellow of the Royal Society of Chemistry. In 1994, he received the Williams-Wright Award from the Coblentz Society and in 2008 was President of the Society for Applied Spectroscopy.
About the Editors xxi
List of Contributors xxiii
Preface xxvii
Section I: Introduction 1
1 Introduction and Scope 3
John M. Chalmers, Howell G.M. Edwards and Michael D. Hargreaves
1.1 Historical Prologue 3
1.2 The Application of Infrared Spectroscopy and Raman Spectroscopy in
Forensic Science 5
References 7
2 Vibrational Spectroscopy Techniques: Basics and Instrumentation 9
John M. Chalmers, Howell G.M. Edwards and Michael D. Hargreaves
2.1 Introduction 9
2.2 Vibrational Spectroscopy Techniques 9
2.2.1 The basics and some comparisons 9
2.2.2 Quantitative and classification analyses 16
2.2.3 Reference databases and search libraries/algorithms 20
2.3 Vibrational Spectroscopy: Instrumentation 22
2.3.1 Spectrometers 22
2.3.2 Vibrational spectroscopy-microscopy systems 28
2.3.3 Fibre optics and fibre-optic probes 34
2.3.4 Remote, portable, handheld, field-use, and stand-off vibrational
spectroscopy instrumentation 35
2.4 Closing Remarks 40
References 40
3 Vibrational Spectroscopy Sampling Techniques 45
John M. Chalmers, Howell G.M. Edwards and Michael D. Hargreaves
3.1 Introduction 45
3.2 Vibrational Spectroscopy: Sampling Techniques 47
3.2.1 Raman spectroscopy 47
3.2.2 Mid-infrared spectroscopy 58
3.2.3 Near-infrared spectroscopy: sampling techniques 76
3.2.4 Terahertz/far-infrared spectroscopy: sampling techniques 79
3.3 Closing Remarks 81
Acknowledgements 81
References 82
Section II: Criminal Scene 87
4 Criminal Forensic Analysis 89
Edward G. Bartick
4.1 Introduction 89
4.2 Forensic Analysis 90
4.3 General Use of IR and Raman Spectroscopy in Forensic Analysis 91
4.3.1 Progression of infrared spectroscopy development in forensic analysis
91
4.3.2 Progression of Raman spectroscopy development in forensic analysis 91
4.3.3 Sampling methods 91
4.4 Applications of Evidential Material Analysis 93
4.4.1 Polymers 93
4.4.2 Drugs 101
4.4.3 Explosives 103
4.4.4 Fingerprint analysis 104
4.5 Summary and Future Direction 105
Acknowledgements 106
References 106
4.1 Forensic Analysis of Hair by Infrared Spectroscopy 111
Kathryn S. Kalasinsky
4.1.1 Introduction 111
4.1.2 Basic Forensic Hair Analysis 113
4.1.3 Uniqueness of Hair to Chemical Analysis 114
4.1.4 Mechanism for Chemical Substance Incorporation into Hair 115
4.1.5 Applications 118
4.1.6 Disease Diagnosis 119
4.1.7 Summary 119
References 119
4.2 Raman Spectroscopy for Forensic Analysis of Household and Automotive
Paints 121
Steven E.J. Bell, Samantha P. Stewart and W.J. Armstrong
4.2.1 Introduction 121
4.2.2 Paint Composition 121
4.2.3 Analysis of Resin Bases 122
4.2.4 White Paint 125
4.2.5 Coloured Household Paints 126
4.2.6 Multi-Layer Paints 130
4.2.7 Automotive Paint 132
4.2.8 Conclusions 135
References 135
4.3 Raman Spectroscopy for the Characterisation of Inks on Written
Documents 137
A. Guedes and A.C. Prieto
4.3.1 Introduction 137
4.3.2 Experimental 139
4.3.3 Chemical Differences in the Composition of Writing Inks through Time,
and Modern Inks: Major Groups 141
4.3.4 Ink Discrimination 144
4.3.5 Forensic Test 146
4.3.6 Conclusions 149
References 149
4.4 Forensic Analysis of Fibres by Vibrational Spectroscopy 153
Peter M. Fredericks
4.4.1 Introduction 153
4.4.2 Infrared Spectroscopy 154
4.4.3 Raman Spectroscopy 162
4.4.4 Data Analysis 165
4.4.5 Conclusions 167
Acknowledgement 168
References 168
4.5 In Situ Crime Scene Analysis 171
Edward G. Bartick
4.5.1 Introduction 171
4.5.2 Instrumentation 172
4.5.3 Applications 177
4.5.4 Conclusion 183
Acknowledgements 183
References 183
4.6 Raman spectroscopy gains currency 185
R. Withnall, A. Reip and J. Silver
4.6.1 Introduction 185
4.6.2 Banknotes 186
4.6.3 Postage Stamps 194
4.6.4 Potential Forensic Applications 198
4.6.5 Conclusions 203
Acknowledgements 203
References 203
Section III: Counter Terrorism and Homeland Security 205
5 Counter Terrorism and Homeland Security 207
Vincent Otieno-Alego and Naomi Speers
5.1 Introduction 207
5.2 Infrared and Raman Spectroscopy for Explosives Identification 208
5.2.1 Level of chemical identification 209
5.2.2 Capability to analyse a large range of explosives and related
chemicals 210
5.2.3 Other positive features of IR and Raman spectroscopy in explosive
analysis 211
5.2.4 Case Studies - Example 1 211
5.3 Portable IR and Raman Instruments 213
5.3.1 Case Studies - Example 2 214
5.4 Post-Blast Examinations 217
5.5 Detection of Explosives in Fingerprints 217
5.6 Spatially Offset Raman Spectroscopy 218
5.6.1 Applications of SORS in explosive analysis 220
5.7 Terahertz Spectroscopy of Explosives 221
5.7.1 Sampling modes and sample preparation 222
5.7.2 THz spectroscopy of explosives and explosive related materials 223
5.8 Summary 226
Glossary 227
References 228
5.1 Tracing Bioagents - a Vibrational Spectroscopic Approach for a Fast and
Reliable Identification of Bioagents 233
P. Rösch, U. Münchberg, S. Stöckel and J. Popp
5.1.1 Introduction 233
5.1.2 Toxins 236
5.1.3 Viruses 238
5.1.4 Bacteria 238
5.1.4.1 Bulk samples 238
5.1.4.2 Single bacterium identification 240
5.1.5 Conclusion 246
Acknowledgement 246
References 246
5.2 Raman Spectroscopic Studies of Explosives and Precursors: Applications
and Instrumentation 251
Mary L. Lewis, Ian R. Lewis and Peter R. Griffiths
5.2.1 Background 251
5.2.2 Introduction 252
5.2.3 UV Excited Raman Studies of Explosives 253
5.2.4 FT-Raman Studies of Explosives 255
5.2.5 Neither FT-Raman nor Traditional Dispersive Raman 258
5.2.6 Surface Enhanced Raman and Surface Enhanced Resonance Raman Studies
of Explosives 258
5.2.7 Dispersive Raman Studies of Explosives 259
5.2.8 Compact Dispersive Raman Spectrometers for the Study of Explosives
260
5.2.9 Spatially Offset Raman Spectroscopy 265
5.2.10 Stand-Off Raman of Explosives 266
5.2.11 Raman Microscopy and Imaging 266
5.2.12 Vehicle-Mounted Raman Analysers 267
5.2.13 Classification Schema for Explosives 268
5.2.14 Summary 268
References 269
5.3 Handheld Raman and FT-IR Spectrometers 275
Michael D. Hargreaves, Robert L. Green, Wayne Jalenak, Christopher D. Brown
and Craig Gardner
5.3.1 Introduction 275
5.3.2 Handheld/Portable Raman and FT-IR Devices 276
5.3.3 Explosives 276
5.3.4 Tactical Considerations 277
5.3.5 Sample Considerations 279
5.3.6 Raman and FT-IR Spectroscopy Explosive Identification Capabilities
280
5.3.7 Performance Characterisation 285
5.3.8 Summary 285
Disclaimer 286
References 286
5.4 Non-Invasive Detection of Concealed Liquid and Powder Explosives using
Spatially Offset Raman spectroscopy 289
Kevin Buckley and Pavel Matousek
5.4.1 Introduction 289
5.4.2 Discussion and Examples 290
5.4.3 Summary 293
References 294
5.5 Terahertz Frequency Spectroscopy and its Potential for Security
Applications 295
A.D. Burnett, A.G. Davies, P. Dean, J.E. Cunningham and E.H. Linfield
5.5.1 Introduction 295
5.5.2 Terahertz Frequency Radiation 296
5.5.3 Terahertz Time-Domain Spectroscopy 296
5.5.4 Examples of the Use of THz Spectroscopy to Detect Materials of
Security Interest 298
5.5.5 Conclusions and Future Outlook 309
Acknowledgements 309
References 310
Section IV: Drugs and Drugs of Abuse 315
6 Raman Spectroscopy of Drugs of Abuse 317
Steven E.J. Bell, Samantha P. Stewart and S.J. Speers
6.1 Introduction 317
6.2 Bulk Drugs 317
6.2.1 General introduction 317
6.2.2 Experimental considerations 319
6.2.3 Laboratory-based methods 322
6.2.4 Raman outside the laboratory 326
6.3 Trace Detection 328
6.3.1 Drug microparticles 328
6.3.2 Surface-enhanced Raman spectroscopy 329
6.4 Conclusions 335
References 336
6.1 Drugs of Abuse - Application of Handheld FT-IR and Raman Spectrometers
339
Michael D. Hargreaves
6.1.1 Introduction 339
6.1.2 Advantages of Vibrational Spectroscopy 339
6.1.3 General Drugs of Abuse - Introduction 340
6.1.4 Vibrational Spectroscopy 340
6.1.5 Analysis of Street Samples 343
6.1.6 New Narcotic Threats 344
6.1.7 Identification of Drug Precursors 344
6.1.8 Case Studies 346
6.1.9 Conclusion 347
Disclaimer 348
References 348
6.2 Non-Invasive Detection of Illicit Drugs Using Spatially Offset Raman
Spectroscopy 351
Kevin Buckley and Pavel Matousek
6.2.1 Introduction 351
6.2.2 Application Examples 352
6.2.3 Summary 356
References 356
6.3 Detection of Drugs of Abuse Using Surface Enhanced Raman Scattering 357
Karen Faulds and W. Ewen Smith
6.3.1 Introduction 357
6.3.2 Substrates 358
6.3.3 Direct Detection 360
6.3.4 Indirect Detection 363
6.3.5 Conclusions 365
References 365
Section V: Art 367
7 Vibrational Spectroscopy as a Tool for Tracing Art Forgeries 369
A. Deneckere, P. Vandenabeele and L. Moens
7.1 Introduction 369
7.2 How to Trace Art Forgeries with Vibrational Spectroscopy? 371
7.2.1 Detection of anachronisms 371
7.2.2 Comparing with the artist's palette 375
7.2.3 Impurities 377
7.3 Conclusion 380
Acknowledgements 380
References 380
7.1 Identification of Dyes and Pigments by Vibrational Spectroscopy 383
Juan Manuel Madariaga
7.1.1 Introduction 383
7.1.2 Review of the Scientific Literature 384
7.1.3 Databases of Reference Materials 386
7.1.4 FT-IR and Raman Spectroscopy Applications 390
References 396
7.2 The Vinland Map: An Authentic Relic of Early Exploration or a Modern
Forgery - Raman Spectroscopy in a Pivotal Role? 401
Howell G.M. Edwards
7.2.1 Introduction 401
7.2.2 The Scientific Analysis of the Vinland Map and Tartar Relation 403
7.2.3 Raman Microspectroscopic Study 403
References 407
7.3 Study of Manuscripts by Vibrational Spectroscopy 409
Lucia Burgio
7.3.1 Introduction 409
7.3.2 Why Raman Microscopy? 410
7.3.3 Dating and Authentication 411
7.3.4 Provenance and Trade Routes 413
7.3.5 Infrared Spectroscopy 415
Acknowledgements 415
References 415
Section VI: Archaeology and Mineralogy 419
8 Infrared and Raman Spectroscopy: Forensic Applications in Mineralogy 421
J. Jehlicka
8.1 Introduction 421
8.2 Applications of Raman Spectroscopy for Provenancing 423
8.3 Raman Spectroscopy of Minerals 423
8.3.1 Class 1: Elements 423
8.3.2 Minerals from other groups of the mineralogical classification system
426
8.4 Opals 428
8.5 Natural Glass 428
8.6 Meteorites 429
8.7 Identification and Provenancing of Gemstones 430
8.7.1 Synthetic gemstones 431
8.7.2 Semi-precious minerals 431
8.7.3 Garnets 431
8.8 Common Minerals 433
8.8.1 Clays 433
8.9 Databases 434
8.10 Identification of Inclusions in Minerals 434
8.11 Raman Mapping Techniques 436
8.12 Analyses Outdoors and On Site 437
8.13 Applications of Raman Spectroscopy to the Provenancing of Rocks 438
8.14 Summary 438
Acknowledgements 439
References 439
8.1 Identification of Ivory by Conventional Backscatter Raman and SORS 447
Michael D. Hargreaves and Howell G.M. Edwards
8.1.1 Introduction 447
8.1.2 Application of Raman Spectroscopy 449
8.1.3 Conclusions 453
Disclaimer 453
References 454
8.2 Applications to the Study of Gems and Jewellery 455
Lore Kiefert, Marina Epelboym, Hpone-Phyo Kan-Nyunt and Susan Paralusz
8.2.1 Introduction 455
8.2.2 Case Study Example I: Mid-Infrared and Raman Spectroscopy of Diamonds
456
8.2.3 Case Study Example II: Detection of Fissure Fillings in Emeralds 458
8.2.4 Case Study Example III: The Raman Identification of Turquoise 464
8.2.5 Summary 466
Acknowledgements 467
References 467
8.3 Raman Spectroscopy of Ceramics and Glasses 469
Paola Ricciardi and Philippe Colomban
8.3.1 Introduction 469
8.3.2 How to Discriminate Between Genuine Artifacts and Copies and Fakes
470
8.3.3 On-Site Measurements and Procedures 472
8.3.4 Case Studies 474
8.3.5 Conclusions 478
References 478
8.4 Raman Spectroscopy at Longer Excitation Wavelengths Applied to the
Forensic Analysis of Archaeological Specimens: A Novel Aspect of Forensic
Geoscience 481
Howell G.M. Edwards
8.4.1 Introduction 481
8.4.2 Experimental 486
8.4.3 Results and Discussion 486
8.4.4 Human Tissues and Skeletal Remains 495
8.4.5 Conclusions 509
Acknowledgements 509
References 510
Section VII: Counterfeit Consumer Products 513
9 Counterfeit Consumer Products 515
Andrew J. O'Neil
9.1 Background 515
9.2 Anti-Counterfeiting Organisations 515
9.3 Definition of a Counterfeit Product 516
9.4 Counterfeit Product Spectroscopic Analysis 516
9.4.1 Counterfeit alcoholic beverages and whisky 517
9.4.2 Counterfeit stamps 518
9.4.3 Counterfeit currency 519
9.4.4 Counterfeit medicines 520
9.5 Case Studies Using Mid-infrared, Raman and Near-infrared Spectroscopies
and NIR Multispectral Imaging 529
9.6 Case Study I: Counterfeit Clothing 532
9.6.1 Case study Ia: counterfeit Burberry Classic Check Scarf 532
9.6.2 Case study Ib: counterfeit New Era 59fifty baseball caps 532
9.7 Case Study II: Counterfeit Aftershave 536
9.8 Case Study III: Counterfeit Medicines 540
9.8.1 Near-infrared spectrometry 542
9.8.2 Raman spectrometry 545
9.8.3 NIR Multispectral Imaging 547
9.9 Case Study IV: Counterfeit Product Packaging 549
9.9.1 ATR/FT-IR Spectroscopy 549
9.10 Case Study V: Counterfeit Royal Mail First Class Stamps 551
9.10.1 Near-infrared spectroscopic analysis 551
9.10.2 Near-infrared multispectral imaging 551
9.11 Case Study VI: Counterfeit Bank of England Banknotes 552
9.11.1 ATR/FT-IR Spectroscopic Analysis 552
9.11.2 NIR Multispectral Imaging 555
9.12 Conclusion 555
References 557
9.1 Raman Spectroscopy for the Analysis of Counterfeit Tablets 561
Kaho Kwok and Lynne S. Taylor
9.1.1 The Pharmaceutical Counterfeiting Problem 561
9.1.2 Analytical Techniques to Detect Counterfeit Products 562
9.1.3 Using Raman Spectroscopy to Characterise Genuine and Counterfeit
Tablets-A Case Study 563
9.1.4 Conclusions 571
Acknowledgements 571
References 571
9.2 Examination of Counterfeit Pharmaceutical Labels 573
Mark R. Witkowski and Mary W. Carrabba
9.2.1 Introduction 573
9.2.2 Counterfeit Packaging Analysis 574
9.2.3 Case Study I: Counterfeit Lipitor Ò Labels 574
9.2.4 Case Study II: Counterfeit Zyprexa Ò Labels 578
9.2.5 Conclusion 581
Disclaimer 582
Acknowledgements 582
References 582
9.3 Vibrational Spectroscopy for "Food Forensics" 583
Victoria L. Brewster and Royston Goodacre
9.3.1 Introduction 583
9.3.2 Adulteration 584
9.3.3 Provenance 587
9.3.4 Food Spoilage 587
9.3.5 Micro-Organism Identification 588
9.3.6 Conclusion 589
Acknowledgements 589
References 589
9.4 Infrared Spectroscopy for the Detection of Adulteration in Foods 593
Banu Özen and Figen Tokatli
9.4.1 Introduction 593
9.4.2 Adulteration of Food Products and Application of IR Spectroscopy in
the Detection of Adulteration 594
9.4.3 Case Study: Adulteration of Extra Virgin Olive Oils with Refined
Hazelnut Oil 596
9.4.4 Summary 599
References 599
Index 603
List of Contributors xxiii
Preface xxvii
Section I: Introduction 1
1 Introduction and Scope 3
John M. Chalmers, Howell G.M. Edwards and Michael D. Hargreaves
1.1 Historical Prologue 3
1.2 The Application of Infrared Spectroscopy and Raman Spectroscopy in
Forensic Science 5
References 7
2 Vibrational Spectroscopy Techniques: Basics and Instrumentation 9
John M. Chalmers, Howell G.M. Edwards and Michael D. Hargreaves
2.1 Introduction 9
2.2 Vibrational Spectroscopy Techniques 9
2.2.1 The basics and some comparisons 9
2.2.2 Quantitative and classification analyses 16
2.2.3 Reference databases and search libraries/algorithms 20
2.3 Vibrational Spectroscopy: Instrumentation 22
2.3.1 Spectrometers 22
2.3.2 Vibrational spectroscopy-microscopy systems 28
2.3.3 Fibre optics and fibre-optic probes 34
2.3.4 Remote, portable, handheld, field-use, and stand-off vibrational
spectroscopy instrumentation 35
2.4 Closing Remarks 40
References 40
3 Vibrational Spectroscopy Sampling Techniques 45
John M. Chalmers, Howell G.M. Edwards and Michael D. Hargreaves
3.1 Introduction 45
3.2 Vibrational Spectroscopy: Sampling Techniques 47
3.2.1 Raman spectroscopy 47
3.2.2 Mid-infrared spectroscopy 58
3.2.3 Near-infrared spectroscopy: sampling techniques 76
3.2.4 Terahertz/far-infrared spectroscopy: sampling techniques 79
3.3 Closing Remarks 81
Acknowledgements 81
References 82
Section II: Criminal Scene 87
4 Criminal Forensic Analysis 89
Edward G. Bartick
4.1 Introduction 89
4.2 Forensic Analysis 90
4.3 General Use of IR and Raman Spectroscopy in Forensic Analysis 91
4.3.1 Progression of infrared spectroscopy development in forensic analysis
91
4.3.2 Progression of Raman spectroscopy development in forensic analysis 91
4.3.3 Sampling methods 91
4.4 Applications of Evidential Material Analysis 93
4.4.1 Polymers 93
4.4.2 Drugs 101
4.4.3 Explosives 103
4.4.4 Fingerprint analysis 104
4.5 Summary and Future Direction 105
Acknowledgements 106
References 106
4.1 Forensic Analysis of Hair by Infrared Spectroscopy 111
Kathryn S. Kalasinsky
4.1.1 Introduction 111
4.1.2 Basic Forensic Hair Analysis 113
4.1.3 Uniqueness of Hair to Chemical Analysis 114
4.1.4 Mechanism for Chemical Substance Incorporation into Hair 115
4.1.5 Applications 118
4.1.6 Disease Diagnosis 119
4.1.7 Summary 119
References 119
4.2 Raman Spectroscopy for Forensic Analysis of Household and Automotive
Paints 121
Steven E.J. Bell, Samantha P. Stewart and W.J. Armstrong
4.2.1 Introduction 121
4.2.2 Paint Composition 121
4.2.3 Analysis of Resin Bases 122
4.2.4 White Paint 125
4.2.5 Coloured Household Paints 126
4.2.6 Multi-Layer Paints 130
4.2.7 Automotive Paint 132
4.2.8 Conclusions 135
References 135
4.3 Raman Spectroscopy for the Characterisation of Inks on Written
Documents 137
A. Guedes and A.C. Prieto
4.3.1 Introduction 137
4.3.2 Experimental 139
4.3.3 Chemical Differences in the Composition of Writing Inks through Time,
and Modern Inks: Major Groups 141
4.3.4 Ink Discrimination 144
4.3.5 Forensic Test 146
4.3.6 Conclusions 149
References 149
4.4 Forensic Analysis of Fibres by Vibrational Spectroscopy 153
Peter M. Fredericks
4.4.1 Introduction 153
4.4.2 Infrared Spectroscopy 154
4.4.3 Raman Spectroscopy 162
4.4.4 Data Analysis 165
4.4.5 Conclusions 167
Acknowledgement 168
References 168
4.5 In Situ Crime Scene Analysis 171
Edward G. Bartick
4.5.1 Introduction 171
4.5.2 Instrumentation 172
4.5.3 Applications 177
4.5.4 Conclusion 183
Acknowledgements 183
References 183
4.6 Raman spectroscopy gains currency 185
R. Withnall, A. Reip and J. Silver
4.6.1 Introduction 185
4.6.2 Banknotes 186
4.6.3 Postage Stamps 194
4.6.4 Potential Forensic Applications 198
4.6.5 Conclusions 203
Acknowledgements 203
References 203
Section III: Counter Terrorism and Homeland Security 205
5 Counter Terrorism and Homeland Security 207
Vincent Otieno-Alego and Naomi Speers
5.1 Introduction 207
5.2 Infrared and Raman Spectroscopy for Explosives Identification 208
5.2.1 Level of chemical identification 209
5.2.2 Capability to analyse a large range of explosives and related
chemicals 210
5.2.3 Other positive features of IR and Raman spectroscopy in explosive
analysis 211
5.2.4 Case Studies - Example 1 211
5.3 Portable IR and Raman Instruments 213
5.3.1 Case Studies - Example 2 214
5.4 Post-Blast Examinations 217
5.5 Detection of Explosives in Fingerprints 217
5.6 Spatially Offset Raman Spectroscopy 218
5.6.1 Applications of SORS in explosive analysis 220
5.7 Terahertz Spectroscopy of Explosives 221
5.7.1 Sampling modes and sample preparation 222
5.7.2 THz spectroscopy of explosives and explosive related materials 223
5.8 Summary 226
Glossary 227
References 228
5.1 Tracing Bioagents - a Vibrational Spectroscopic Approach for a Fast and
Reliable Identification of Bioagents 233
P. Rösch, U. Münchberg, S. Stöckel and J. Popp
5.1.1 Introduction 233
5.1.2 Toxins 236
5.1.3 Viruses 238
5.1.4 Bacteria 238
5.1.4.1 Bulk samples 238
5.1.4.2 Single bacterium identification 240
5.1.5 Conclusion 246
Acknowledgement 246
References 246
5.2 Raman Spectroscopic Studies of Explosives and Precursors: Applications
and Instrumentation 251
Mary L. Lewis, Ian R. Lewis and Peter R. Griffiths
5.2.1 Background 251
5.2.2 Introduction 252
5.2.3 UV Excited Raman Studies of Explosives 253
5.2.4 FT-Raman Studies of Explosives 255
5.2.5 Neither FT-Raman nor Traditional Dispersive Raman 258
5.2.6 Surface Enhanced Raman and Surface Enhanced Resonance Raman Studies
of Explosives 258
5.2.7 Dispersive Raman Studies of Explosives 259
5.2.8 Compact Dispersive Raman Spectrometers for the Study of Explosives
260
5.2.9 Spatially Offset Raman Spectroscopy 265
5.2.10 Stand-Off Raman of Explosives 266
5.2.11 Raman Microscopy and Imaging 266
5.2.12 Vehicle-Mounted Raman Analysers 267
5.2.13 Classification Schema for Explosives 268
5.2.14 Summary 268
References 269
5.3 Handheld Raman and FT-IR Spectrometers 275
Michael D. Hargreaves, Robert L. Green, Wayne Jalenak, Christopher D. Brown
and Craig Gardner
5.3.1 Introduction 275
5.3.2 Handheld/Portable Raman and FT-IR Devices 276
5.3.3 Explosives 276
5.3.4 Tactical Considerations 277
5.3.5 Sample Considerations 279
5.3.6 Raman and FT-IR Spectroscopy Explosive Identification Capabilities
280
5.3.7 Performance Characterisation 285
5.3.8 Summary 285
Disclaimer 286
References 286
5.4 Non-Invasive Detection of Concealed Liquid and Powder Explosives using
Spatially Offset Raman spectroscopy 289
Kevin Buckley and Pavel Matousek
5.4.1 Introduction 289
5.4.2 Discussion and Examples 290
5.4.3 Summary 293
References 294
5.5 Terahertz Frequency Spectroscopy and its Potential for Security
Applications 295
A.D. Burnett, A.G. Davies, P. Dean, J.E. Cunningham and E.H. Linfield
5.5.1 Introduction 295
5.5.2 Terahertz Frequency Radiation 296
5.5.3 Terahertz Time-Domain Spectroscopy 296
5.5.4 Examples of the Use of THz Spectroscopy to Detect Materials of
Security Interest 298
5.5.5 Conclusions and Future Outlook 309
Acknowledgements 309
References 310
Section IV: Drugs and Drugs of Abuse 315
6 Raman Spectroscopy of Drugs of Abuse 317
Steven E.J. Bell, Samantha P. Stewart and S.J. Speers
6.1 Introduction 317
6.2 Bulk Drugs 317
6.2.1 General introduction 317
6.2.2 Experimental considerations 319
6.2.3 Laboratory-based methods 322
6.2.4 Raman outside the laboratory 326
6.3 Trace Detection 328
6.3.1 Drug microparticles 328
6.3.2 Surface-enhanced Raman spectroscopy 329
6.4 Conclusions 335
References 336
6.1 Drugs of Abuse - Application of Handheld FT-IR and Raman Spectrometers
339
Michael D. Hargreaves
6.1.1 Introduction 339
6.1.2 Advantages of Vibrational Spectroscopy 339
6.1.3 General Drugs of Abuse - Introduction 340
6.1.4 Vibrational Spectroscopy 340
6.1.5 Analysis of Street Samples 343
6.1.6 New Narcotic Threats 344
6.1.7 Identification of Drug Precursors 344
6.1.8 Case Studies 346
6.1.9 Conclusion 347
Disclaimer 348
References 348
6.2 Non-Invasive Detection of Illicit Drugs Using Spatially Offset Raman
Spectroscopy 351
Kevin Buckley and Pavel Matousek
6.2.1 Introduction 351
6.2.2 Application Examples 352
6.2.3 Summary 356
References 356
6.3 Detection of Drugs of Abuse Using Surface Enhanced Raman Scattering 357
Karen Faulds and W. Ewen Smith
6.3.1 Introduction 357
6.3.2 Substrates 358
6.3.3 Direct Detection 360
6.3.4 Indirect Detection 363
6.3.5 Conclusions 365
References 365
Section V: Art 367
7 Vibrational Spectroscopy as a Tool for Tracing Art Forgeries 369
A. Deneckere, P. Vandenabeele and L. Moens
7.1 Introduction 369
7.2 How to Trace Art Forgeries with Vibrational Spectroscopy? 371
7.2.1 Detection of anachronisms 371
7.2.2 Comparing with the artist's palette 375
7.2.3 Impurities 377
7.3 Conclusion 380
Acknowledgements 380
References 380
7.1 Identification of Dyes and Pigments by Vibrational Spectroscopy 383
Juan Manuel Madariaga
7.1.1 Introduction 383
7.1.2 Review of the Scientific Literature 384
7.1.3 Databases of Reference Materials 386
7.1.4 FT-IR and Raman Spectroscopy Applications 390
References 396
7.2 The Vinland Map: An Authentic Relic of Early Exploration or a Modern
Forgery - Raman Spectroscopy in a Pivotal Role? 401
Howell G.M. Edwards
7.2.1 Introduction 401
7.2.2 The Scientific Analysis of the Vinland Map and Tartar Relation 403
7.2.3 Raman Microspectroscopic Study 403
References 407
7.3 Study of Manuscripts by Vibrational Spectroscopy 409
Lucia Burgio
7.3.1 Introduction 409
7.3.2 Why Raman Microscopy? 410
7.3.3 Dating and Authentication 411
7.3.4 Provenance and Trade Routes 413
7.3.5 Infrared Spectroscopy 415
Acknowledgements 415
References 415
Section VI: Archaeology and Mineralogy 419
8 Infrared and Raman Spectroscopy: Forensic Applications in Mineralogy 421
J. Jehlicka
8.1 Introduction 421
8.2 Applications of Raman Spectroscopy for Provenancing 423
8.3 Raman Spectroscopy of Minerals 423
8.3.1 Class 1: Elements 423
8.3.2 Minerals from other groups of the mineralogical classification system
426
8.4 Opals 428
8.5 Natural Glass 428
8.6 Meteorites 429
8.7 Identification and Provenancing of Gemstones 430
8.7.1 Synthetic gemstones 431
8.7.2 Semi-precious minerals 431
8.7.3 Garnets 431
8.8 Common Minerals 433
8.8.1 Clays 433
8.9 Databases 434
8.10 Identification of Inclusions in Minerals 434
8.11 Raman Mapping Techniques 436
8.12 Analyses Outdoors and On Site 437
8.13 Applications of Raman Spectroscopy to the Provenancing of Rocks 438
8.14 Summary 438
Acknowledgements 439
References 439
8.1 Identification of Ivory by Conventional Backscatter Raman and SORS 447
Michael D. Hargreaves and Howell G.M. Edwards
8.1.1 Introduction 447
8.1.2 Application of Raman Spectroscopy 449
8.1.3 Conclusions 453
Disclaimer 453
References 454
8.2 Applications to the Study of Gems and Jewellery 455
Lore Kiefert, Marina Epelboym, Hpone-Phyo Kan-Nyunt and Susan Paralusz
8.2.1 Introduction 455
8.2.2 Case Study Example I: Mid-Infrared and Raman Spectroscopy of Diamonds
456
8.2.3 Case Study Example II: Detection of Fissure Fillings in Emeralds 458
8.2.4 Case Study Example III: The Raman Identification of Turquoise 464
8.2.5 Summary 466
Acknowledgements 467
References 467
8.3 Raman Spectroscopy of Ceramics and Glasses 469
Paola Ricciardi and Philippe Colomban
8.3.1 Introduction 469
8.3.2 How to Discriminate Between Genuine Artifacts and Copies and Fakes
470
8.3.3 On-Site Measurements and Procedures 472
8.3.4 Case Studies 474
8.3.5 Conclusions 478
References 478
8.4 Raman Spectroscopy at Longer Excitation Wavelengths Applied to the
Forensic Analysis of Archaeological Specimens: A Novel Aspect of Forensic
Geoscience 481
Howell G.M. Edwards
8.4.1 Introduction 481
8.4.2 Experimental 486
8.4.3 Results and Discussion 486
8.4.4 Human Tissues and Skeletal Remains 495
8.4.5 Conclusions 509
Acknowledgements 509
References 510
Section VII: Counterfeit Consumer Products 513
9 Counterfeit Consumer Products 515
Andrew J. O'Neil
9.1 Background 515
9.2 Anti-Counterfeiting Organisations 515
9.3 Definition of a Counterfeit Product 516
9.4 Counterfeit Product Spectroscopic Analysis 516
9.4.1 Counterfeit alcoholic beverages and whisky 517
9.4.2 Counterfeit stamps 518
9.4.3 Counterfeit currency 519
9.4.4 Counterfeit medicines 520
9.5 Case Studies Using Mid-infrared, Raman and Near-infrared Spectroscopies
and NIR Multispectral Imaging 529
9.6 Case Study I: Counterfeit Clothing 532
9.6.1 Case study Ia: counterfeit Burberry Classic Check Scarf 532
9.6.2 Case study Ib: counterfeit New Era 59fifty baseball caps 532
9.7 Case Study II: Counterfeit Aftershave 536
9.8 Case Study III: Counterfeit Medicines 540
9.8.1 Near-infrared spectrometry 542
9.8.2 Raman spectrometry 545
9.8.3 NIR Multispectral Imaging 547
9.9 Case Study IV: Counterfeit Product Packaging 549
9.9.1 ATR/FT-IR Spectroscopy 549
9.10 Case Study V: Counterfeit Royal Mail First Class Stamps 551
9.10.1 Near-infrared spectroscopic analysis 551
9.10.2 Near-infrared multispectral imaging 551
9.11 Case Study VI: Counterfeit Bank of England Banknotes 552
9.11.1 ATR/FT-IR Spectroscopic Analysis 552
9.11.2 NIR Multispectral Imaging 555
9.12 Conclusion 555
References 557
9.1 Raman Spectroscopy for the Analysis of Counterfeit Tablets 561
Kaho Kwok and Lynne S. Taylor
9.1.1 The Pharmaceutical Counterfeiting Problem 561
9.1.2 Analytical Techniques to Detect Counterfeit Products 562
9.1.3 Using Raman Spectroscopy to Characterise Genuine and Counterfeit
Tablets-A Case Study 563
9.1.4 Conclusions 571
Acknowledgements 571
References 571
9.2 Examination of Counterfeit Pharmaceutical Labels 573
Mark R. Witkowski and Mary W. Carrabba
9.2.1 Introduction 573
9.2.2 Counterfeit Packaging Analysis 574
9.2.3 Case Study I: Counterfeit Lipitor Ò Labels 574
9.2.4 Case Study II: Counterfeit Zyprexa Ò Labels 578
9.2.5 Conclusion 581
Disclaimer 582
Acknowledgements 582
References 582
9.3 Vibrational Spectroscopy for "Food Forensics" 583
Victoria L. Brewster and Royston Goodacre
9.3.1 Introduction 583
9.3.2 Adulteration 584
9.3.3 Provenance 587
9.3.4 Food Spoilage 587
9.3.5 Micro-Organism Identification 588
9.3.6 Conclusion 589
Acknowledgements 589
References 589
9.4 Infrared Spectroscopy for the Detection of Adulteration in Foods 593
Banu Özen and Figen Tokatli
9.4.1 Introduction 593
9.4.2 Adulteration of Food Products and Application of IR Spectroscopy in
the Detection of Adulteration 594
9.4.3 Case Study: Adulteration of Extra Virgin Olive Oils with Refined
Hazelnut Oil 596
9.4.4 Summary 599
References 599
Index 603
About the Editors xxi
List of Contributors xxiii
Preface xxvii
Section I: Introduction 1
1 Introduction and Scope 3
John M. Chalmers, Howell G.M. Edwards and Michael D. Hargreaves
1.1 Historical Prologue 3
1.2 The Application of Infrared Spectroscopy and Raman Spectroscopy in
Forensic Science 5
References 7
2 Vibrational Spectroscopy Techniques: Basics and Instrumentation 9
John M. Chalmers, Howell G.M. Edwards and Michael D. Hargreaves
2.1 Introduction 9
2.2 Vibrational Spectroscopy Techniques 9
2.2.1 The basics and some comparisons 9
2.2.2 Quantitative and classification analyses 16
2.2.3 Reference databases and search libraries/algorithms 20
2.3 Vibrational Spectroscopy: Instrumentation 22
2.3.1 Spectrometers 22
2.3.2 Vibrational spectroscopy-microscopy systems 28
2.3.3 Fibre optics and fibre-optic probes 34
2.3.4 Remote, portable, handheld, field-use, and stand-off vibrational
spectroscopy instrumentation 35
2.4 Closing Remarks 40
References 40
3 Vibrational Spectroscopy Sampling Techniques 45
John M. Chalmers, Howell G.M. Edwards and Michael D. Hargreaves
3.1 Introduction 45
3.2 Vibrational Spectroscopy: Sampling Techniques 47
3.2.1 Raman spectroscopy 47
3.2.2 Mid-infrared spectroscopy 58
3.2.3 Near-infrared spectroscopy: sampling techniques 76
3.2.4 Terahertz/far-infrared spectroscopy: sampling techniques 79
3.3 Closing Remarks 81
Acknowledgements 81
References 82
Section II: Criminal Scene 87
4 Criminal Forensic Analysis 89
Edward G. Bartick
4.1 Introduction 89
4.2 Forensic Analysis 90
4.3 General Use of IR and Raman Spectroscopy in Forensic Analysis 91
4.3.1 Progression of infrared spectroscopy development in forensic analysis
91
4.3.2 Progression of Raman spectroscopy development in forensic analysis 91
4.3.3 Sampling methods 91
4.4 Applications of Evidential Material Analysis 93
4.4.1 Polymers 93
4.4.2 Drugs 101
4.4.3 Explosives 103
4.4.4 Fingerprint analysis 104
4.5 Summary and Future Direction 105
Acknowledgements 106
References 106
4.1 Forensic Analysis of Hair by Infrared Spectroscopy 111
Kathryn S. Kalasinsky
4.1.1 Introduction 111
4.1.2 Basic Forensic Hair Analysis 113
4.1.3 Uniqueness of Hair to Chemical Analysis 114
4.1.4 Mechanism for Chemical Substance Incorporation into Hair 115
4.1.5 Applications 118
4.1.6 Disease Diagnosis 119
4.1.7 Summary 119
References 119
4.2 Raman Spectroscopy for Forensic Analysis of Household and Automotive
Paints 121
Steven E.J. Bell, Samantha P. Stewart and W.J. Armstrong
4.2.1 Introduction 121
4.2.2 Paint Composition 121
4.2.3 Analysis of Resin Bases 122
4.2.4 White Paint 125
4.2.5 Coloured Household Paints 126
4.2.6 Multi-Layer Paints 130
4.2.7 Automotive Paint 132
4.2.8 Conclusions 135
References 135
4.3 Raman Spectroscopy for the Characterisation of Inks on Written
Documents 137
A. Guedes and A.C. Prieto
4.3.1 Introduction 137
4.3.2 Experimental 139
4.3.3 Chemical Differences in the Composition of Writing Inks through Time,
and Modern Inks: Major Groups 141
4.3.4 Ink Discrimination 144
4.3.5 Forensic Test 146
4.3.6 Conclusions 149
References 149
4.4 Forensic Analysis of Fibres by Vibrational Spectroscopy 153
Peter M. Fredericks
4.4.1 Introduction 153
4.4.2 Infrared Spectroscopy 154
4.4.3 Raman Spectroscopy 162
4.4.4 Data Analysis 165
4.4.5 Conclusions 167
Acknowledgement 168
References 168
4.5 In Situ Crime Scene Analysis 171
Edward G. Bartick
4.5.1 Introduction 171
4.5.2 Instrumentation 172
4.5.3 Applications 177
4.5.4 Conclusion 183
Acknowledgements 183
References 183
4.6 Raman spectroscopy gains currency 185
R. Withnall, A. Reip and J. Silver
4.6.1 Introduction 185
4.6.2 Banknotes 186
4.6.3 Postage Stamps 194
4.6.4 Potential Forensic Applications 198
4.6.5 Conclusions 203
Acknowledgements 203
References 203
Section III: Counter Terrorism and Homeland Security 205
5 Counter Terrorism and Homeland Security 207
Vincent Otieno-Alego and Naomi Speers
5.1 Introduction 207
5.2 Infrared and Raman Spectroscopy for Explosives Identification 208
5.2.1 Level of chemical identification 209
5.2.2 Capability to analyse a large range of explosives and related
chemicals 210
5.2.3 Other positive features of IR and Raman spectroscopy in explosive
analysis 211
5.2.4 Case Studies - Example 1 211
5.3 Portable IR and Raman Instruments 213
5.3.1 Case Studies - Example 2 214
5.4 Post-Blast Examinations 217
5.5 Detection of Explosives in Fingerprints 217
5.6 Spatially Offset Raman Spectroscopy 218
5.6.1 Applications of SORS in explosive analysis 220
5.7 Terahertz Spectroscopy of Explosives 221
5.7.1 Sampling modes and sample preparation 222
5.7.2 THz spectroscopy of explosives and explosive related materials 223
5.8 Summary 226
Glossary 227
References 228
5.1 Tracing Bioagents - a Vibrational Spectroscopic Approach for a Fast and
Reliable Identification of Bioagents 233
P. Rösch, U. Münchberg, S. Stöckel and J. Popp
5.1.1 Introduction 233
5.1.2 Toxins 236
5.1.3 Viruses 238
5.1.4 Bacteria 238
5.1.4.1 Bulk samples 238
5.1.4.2 Single bacterium identification 240
5.1.5 Conclusion 246
Acknowledgement 246
References 246
5.2 Raman Spectroscopic Studies of Explosives and Precursors: Applications
and Instrumentation 251
Mary L. Lewis, Ian R. Lewis and Peter R. Griffiths
5.2.1 Background 251
5.2.2 Introduction 252
5.2.3 UV Excited Raman Studies of Explosives 253
5.2.4 FT-Raman Studies of Explosives 255
5.2.5 Neither FT-Raman nor Traditional Dispersive Raman 258
5.2.6 Surface Enhanced Raman and Surface Enhanced Resonance Raman Studies
of Explosives 258
5.2.7 Dispersive Raman Studies of Explosives 259
5.2.8 Compact Dispersive Raman Spectrometers for the Study of Explosives
260
5.2.9 Spatially Offset Raman Spectroscopy 265
5.2.10 Stand-Off Raman of Explosives 266
5.2.11 Raman Microscopy and Imaging 266
5.2.12 Vehicle-Mounted Raman Analysers 267
5.2.13 Classification Schema for Explosives 268
5.2.14 Summary 268
References 269
5.3 Handheld Raman and FT-IR Spectrometers 275
Michael D. Hargreaves, Robert L. Green, Wayne Jalenak, Christopher D. Brown
and Craig Gardner
5.3.1 Introduction 275
5.3.2 Handheld/Portable Raman and FT-IR Devices 276
5.3.3 Explosives 276
5.3.4 Tactical Considerations 277
5.3.5 Sample Considerations 279
5.3.6 Raman and FT-IR Spectroscopy Explosive Identification Capabilities
280
5.3.7 Performance Characterisation 285
5.3.8 Summary 285
Disclaimer 286
References 286
5.4 Non-Invasive Detection of Concealed Liquid and Powder Explosives using
Spatially Offset Raman spectroscopy 289
Kevin Buckley and Pavel Matousek
5.4.1 Introduction 289
5.4.2 Discussion and Examples 290
5.4.3 Summary 293
References 294
5.5 Terahertz Frequency Spectroscopy and its Potential for Security
Applications 295
A.D. Burnett, A.G. Davies, P. Dean, J.E. Cunningham and E.H. Linfield
5.5.1 Introduction 295
5.5.2 Terahertz Frequency Radiation 296
5.5.3 Terahertz Time-Domain Spectroscopy 296
5.5.4 Examples of the Use of THz Spectroscopy to Detect Materials of
Security Interest 298
5.5.5 Conclusions and Future Outlook 309
Acknowledgements 309
References 310
Section IV: Drugs and Drugs of Abuse 315
6 Raman Spectroscopy of Drugs of Abuse 317
Steven E.J. Bell, Samantha P. Stewart and S.J. Speers
6.1 Introduction 317
6.2 Bulk Drugs 317
6.2.1 General introduction 317
6.2.2 Experimental considerations 319
6.2.3 Laboratory-based methods 322
6.2.4 Raman outside the laboratory 326
6.3 Trace Detection 328
6.3.1 Drug microparticles 328
6.3.2 Surface-enhanced Raman spectroscopy 329
6.4 Conclusions 335
References 336
6.1 Drugs of Abuse - Application of Handheld FT-IR and Raman Spectrometers
339
Michael D. Hargreaves
6.1.1 Introduction 339
6.1.2 Advantages of Vibrational Spectroscopy 339
6.1.3 General Drugs of Abuse - Introduction 340
6.1.4 Vibrational Spectroscopy 340
6.1.5 Analysis of Street Samples 343
6.1.6 New Narcotic Threats 344
6.1.7 Identification of Drug Precursors 344
6.1.8 Case Studies 346
6.1.9 Conclusion 347
Disclaimer 348
References 348
6.2 Non-Invasive Detection of Illicit Drugs Using Spatially Offset Raman
Spectroscopy 351
Kevin Buckley and Pavel Matousek
6.2.1 Introduction 351
6.2.2 Application Examples 352
6.2.3 Summary 356
References 356
6.3 Detection of Drugs of Abuse Using Surface Enhanced Raman Scattering 357
Karen Faulds and W. Ewen Smith
6.3.1 Introduction 357
6.3.2 Substrates 358
6.3.3 Direct Detection 360
6.3.4 Indirect Detection 363
6.3.5 Conclusions 365
References 365
Section V: Art 367
7 Vibrational Spectroscopy as a Tool for Tracing Art Forgeries 369
A. Deneckere, P. Vandenabeele and L. Moens
7.1 Introduction 369
7.2 How to Trace Art Forgeries with Vibrational Spectroscopy? 371
7.2.1 Detection of anachronisms 371
7.2.2 Comparing with the artist's palette 375
7.2.3 Impurities 377
7.3 Conclusion 380
Acknowledgements 380
References 380
7.1 Identification of Dyes and Pigments by Vibrational Spectroscopy 383
Juan Manuel Madariaga
7.1.1 Introduction 383
7.1.2 Review of the Scientific Literature 384
7.1.3 Databases of Reference Materials 386
7.1.4 FT-IR and Raman Spectroscopy Applications 390
References 396
7.2 The Vinland Map: An Authentic Relic of Early Exploration or a Modern
Forgery - Raman Spectroscopy in a Pivotal Role? 401
Howell G.M. Edwards
7.2.1 Introduction 401
7.2.2 The Scientific Analysis of the Vinland Map and Tartar Relation 403
7.2.3 Raman Microspectroscopic Study 403
References 407
7.3 Study of Manuscripts by Vibrational Spectroscopy 409
Lucia Burgio
7.3.1 Introduction 409
7.3.2 Why Raman Microscopy? 410
7.3.3 Dating and Authentication 411
7.3.4 Provenance and Trade Routes 413
7.3.5 Infrared Spectroscopy 415
Acknowledgements 415
References 415
Section VI: Archaeology and Mineralogy 419
8 Infrared and Raman Spectroscopy: Forensic Applications in Mineralogy 421
J. Jehlicka
8.1 Introduction 421
8.2 Applications of Raman Spectroscopy for Provenancing 423
8.3 Raman Spectroscopy of Minerals 423
8.3.1 Class 1: Elements 423
8.3.2 Minerals from other groups of the mineralogical classification system
426
8.4 Opals 428
8.5 Natural Glass 428
8.6 Meteorites 429
8.7 Identification and Provenancing of Gemstones 430
8.7.1 Synthetic gemstones 431
8.7.2 Semi-precious minerals 431
8.7.3 Garnets 431
8.8 Common Minerals 433
8.8.1 Clays 433
8.9 Databases 434
8.10 Identification of Inclusions in Minerals 434
8.11 Raman Mapping Techniques 436
8.12 Analyses Outdoors and On Site 437
8.13 Applications of Raman Spectroscopy to the Provenancing of Rocks 438
8.14 Summary 438
Acknowledgements 439
References 439
8.1 Identification of Ivory by Conventional Backscatter Raman and SORS 447
Michael D. Hargreaves and Howell G.M. Edwards
8.1.1 Introduction 447
8.1.2 Application of Raman Spectroscopy 449
8.1.3 Conclusions 453
Disclaimer 453
References 454
8.2 Applications to the Study of Gems and Jewellery 455
Lore Kiefert, Marina Epelboym, Hpone-Phyo Kan-Nyunt and Susan Paralusz
8.2.1 Introduction 455
8.2.2 Case Study Example I: Mid-Infrared and Raman Spectroscopy of Diamonds
456
8.2.3 Case Study Example II: Detection of Fissure Fillings in Emeralds 458
8.2.4 Case Study Example III: The Raman Identification of Turquoise 464
8.2.5 Summary 466
Acknowledgements 467
References 467
8.3 Raman Spectroscopy of Ceramics and Glasses 469
Paola Ricciardi and Philippe Colomban
8.3.1 Introduction 469
8.3.2 How to Discriminate Between Genuine Artifacts and Copies and Fakes
470
8.3.3 On-Site Measurements and Procedures 472
8.3.4 Case Studies 474
8.3.5 Conclusions 478
References 478
8.4 Raman Spectroscopy at Longer Excitation Wavelengths Applied to the
Forensic Analysis of Archaeological Specimens: A Novel Aspect of Forensic
Geoscience 481
Howell G.M. Edwards
8.4.1 Introduction 481
8.4.2 Experimental 486
8.4.3 Results and Discussion 486
8.4.4 Human Tissues and Skeletal Remains 495
8.4.5 Conclusions 509
Acknowledgements 509
References 510
Section VII: Counterfeit Consumer Products 513
9 Counterfeit Consumer Products 515
Andrew J. O'Neil
9.1 Background 515
9.2 Anti-Counterfeiting Organisations 515
9.3 Definition of a Counterfeit Product 516
9.4 Counterfeit Product Spectroscopic Analysis 516
9.4.1 Counterfeit alcoholic beverages and whisky 517
9.4.2 Counterfeit stamps 518
9.4.3 Counterfeit currency 519
9.4.4 Counterfeit medicines 520
9.5 Case Studies Using Mid-infrared, Raman and Near-infrared Spectroscopies
and NIR Multispectral Imaging 529
9.6 Case Study I: Counterfeit Clothing 532
9.6.1 Case study Ia: counterfeit Burberry Classic Check Scarf 532
9.6.2 Case study Ib: counterfeit New Era 59fifty baseball caps 532
9.7 Case Study II: Counterfeit Aftershave 536
9.8 Case Study III: Counterfeit Medicines 540
9.8.1 Near-infrared spectrometry 542
9.8.2 Raman spectrometry 545
9.8.3 NIR Multispectral Imaging 547
9.9 Case Study IV: Counterfeit Product Packaging 549
9.9.1 ATR/FT-IR Spectroscopy 549
9.10 Case Study V: Counterfeit Royal Mail First Class Stamps 551
9.10.1 Near-infrared spectroscopic analysis 551
9.10.2 Near-infrared multispectral imaging 551
9.11 Case Study VI: Counterfeit Bank of England Banknotes 552
9.11.1 ATR/FT-IR Spectroscopic Analysis 552
9.11.2 NIR Multispectral Imaging 555
9.12 Conclusion 555
References 557
9.1 Raman Spectroscopy for the Analysis of Counterfeit Tablets 561
Kaho Kwok and Lynne S. Taylor
9.1.1 The Pharmaceutical Counterfeiting Problem 561
9.1.2 Analytical Techniques to Detect Counterfeit Products 562
9.1.3 Using Raman Spectroscopy to Characterise Genuine and Counterfeit
Tablets-A Case Study 563
9.1.4 Conclusions 571
Acknowledgements 571
References 571
9.2 Examination of Counterfeit Pharmaceutical Labels 573
Mark R. Witkowski and Mary W. Carrabba
9.2.1 Introduction 573
9.2.2 Counterfeit Packaging Analysis 574
9.2.3 Case Study I: Counterfeit Lipitor Ò Labels 574
9.2.4 Case Study II: Counterfeit Zyprexa Ò Labels 578
9.2.5 Conclusion 581
Disclaimer 582
Acknowledgements 582
References 582
9.3 Vibrational Spectroscopy for "Food Forensics" 583
Victoria L. Brewster and Royston Goodacre
9.3.1 Introduction 583
9.3.2 Adulteration 584
9.3.3 Provenance 587
9.3.4 Food Spoilage 587
9.3.5 Micro-Organism Identification 588
9.3.6 Conclusion 589
Acknowledgements 589
References 589
9.4 Infrared Spectroscopy for the Detection of Adulteration in Foods 593
Banu Özen and Figen Tokatli
9.4.1 Introduction 593
9.4.2 Adulteration of Food Products and Application of IR Spectroscopy in
the Detection of Adulteration 594
9.4.3 Case Study: Adulteration of Extra Virgin Olive Oils with Refined
Hazelnut Oil 596
9.4.4 Summary 599
References 599
Index 603
List of Contributors xxiii
Preface xxvii
Section I: Introduction 1
1 Introduction and Scope 3
John M. Chalmers, Howell G.M. Edwards and Michael D. Hargreaves
1.1 Historical Prologue 3
1.2 The Application of Infrared Spectroscopy and Raman Spectroscopy in
Forensic Science 5
References 7
2 Vibrational Spectroscopy Techniques: Basics and Instrumentation 9
John M. Chalmers, Howell G.M. Edwards and Michael D. Hargreaves
2.1 Introduction 9
2.2 Vibrational Spectroscopy Techniques 9
2.2.1 The basics and some comparisons 9
2.2.2 Quantitative and classification analyses 16
2.2.3 Reference databases and search libraries/algorithms 20
2.3 Vibrational Spectroscopy: Instrumentation 22
2.3.1 Spectrometers 22
2.3.2 Vibrational spectroscopy-microscopy systems 28
2.3.3 Fibre optics and fibre-optic probes 34
2.3.4 Remote, portable, handheld, field-use, and stand-off vibrational
spectroscopy instrumentation 35
2.4 Closing Remarks 40
References 40
3 Vibrational Spectroscopy Sampling Techniques 45
John M. Chalmers, Howell G.M. Edwards and Michael D. Hargreaves
3.1 Introduction 45
3.2 Vibrational Spectroscopy: Sampling Techniques 47
3.2.1 Raman spectroscopy 47
3.2.2 Mid-infrared spectroscopy 58
3.2.3 Near-infrared spectroscopy: sampling techniques 76
3.2.4 Terahertz/far-infrared spectroscopy: sampling techniques 79
3.3 Closing Remarks 81
Acknowledgements 81
References 82
Section II: Criminal Scene 87
4 Criminal Forensic Analysis 89
Edward G. Bartick
4.1 Introduction 89
4.2 Forensic Analysis 90
4.3 General Use of IR and Raman Spectroscopy in Forensic Analysis 91
4.3.1 Progression of infrared spectroscopy development in forensic analysis
91
4.3.2 Progression of Raman spectroscopy development in forensic analysis 91
4.3.3 Sampling methods 91
4.4 Applications of Evidential Material Analysis 93
4.4.1 Polymers 93
4.4.2 Drugs 101
4.4.3 Explosives 103
4.4.4 Fingerprint analysis 104
4.5 Summary and Future Direction 105
Acknowledgements 106
References 106
4.1 Forensic Analysis of Hair by Infrared Spectroscopy 111
Kathryn S. Kalasinsky
4.1.1 Introduction 111
4.1.2 Basic Forensic Hair Analysis 113
4.1.3 Uniqueness of Hair to Chemical Analysis 114
4.1.4 Mechanism for Chemical Substance Incorporation into Hair 115
4.1.5 Applications 118
4.1.6 Disease Diagnosis 119
4.1.7 Summary 119
References 119
4.2 Raman Spectroscopy for Forensic Analysis of Household and Automotive
Paints 121
Steven E.J. Bell, Samantha P. Stewart and W.J. Armstrong
4.2.1 Introduction 121
4.2.2 Paint Composition 121
4.2.3 Analysis of Resin Bases 122
4.2.4 White Paint 125
4.2.5 Coloured Household Paints 126
4.2.6 Multi-Layer Paints 130
4.2.7 Automotive Paint 132
4.2.8 Conclusions 135
References 135
4.3 Raman Spectroscopy for the Characterisation of Inks on Written
Documents 137
A. Guedes and A.C. Prieto
4.3.1 Introduction 137
4.3.2 Experimental 139
4.3.3 Chemical Differences in the Composition of Writing Inks through Time,
and Modern Inks: Major Groups 141
4.3.4 Ink Discrimination 144
4.3.5 Forensic Test 146
4.3.6 Conclusions 149
References 149
4.4 Forensic Analysis of Fibres by Vibrational Spectroscopy 153
Peter M. Fredericks
4.4.1 Introduction 153
4.4.2 Infrared Spectroscopy 154
4.4.3 Raman Spectroscopy 162
4.4.4 Data Analysis 165
4.4.5 Conclusions 167
Acknowledgement 168
References 168
4.5 In Situ Crime Scene Analysis 171
Edward G. Bartick
4.5.1 Introduction 171
4.5.2 Instrumentation 172
4.5.3 Applications 177
4.5.4 Conclusion 183
Acknowledgements 183
References 183
4.6 Raman spectroscopy gains currency 185
R. Withnall, A. Reip and J. Silver
4.6.1 Introduction 185
4.6.2 Banknotes 186
4.6.3 Postage Stamps 194
4.6.4 Potential Forensic Applications 198
4.6.5 Conclusions 203
Acknowledgements 203
References 203
Section III: Counter Terrorism and Homeland Security 205
5 Counter Terrorism and Homeland Security 207
Vincent Otieno-Alego and Naomi Speers
5.1 Introduction 207
5.2 Infrared and Raman Spectroscopy for Explosives Identification 208
5.2.1 Level of chemical identification 209
5.2.2 Capability to analyse a large range of explosives and related
chemicals 210
5.2.3 Other positive features of IR and Raman spectroscopy in explosive
analysis 211
5.2.4 Case Studies - Example 1 211
5.3 Portable IR and Raman Instruments 213
5.3.1 Case Studies - Example 2 214
5.4 Post-Blast Examinations 217
5.5 Detection of Explosives in Fingerprints 217
5.6 Spatially Offset Raman Spectroscopy 218
5.6.1 Applications of SORS in explosive analysis 220
5.7 Terahertz Spectroscopy of Explosives 221
5.7.1 Sampling modes and sample preparation 222
5.7.2 THz spectroscopy of explosives and explosive related materials 223
5.8 Summary 226
Glossary 227
References 228
5.1 Tracing Bioagents - a Vibrational Spectroscopic Approach for a Fast and
Reliable Identification of Bioagents 233
P. Rösch, U. Münchberg, S. Stöckel and J. Popp
5.1.1 Introduction 233
5.1.2 Toxins 236
5.1.3 Viruses 238
5.1.4 Bacteria 238
5.1.4.1 Bulk samples 238
5.1.4.2 Single bacterium identification 240
5.1.5 Conclusion 246
Acknowledgement 246
References 246
5.2 Raman Spectroscopic Studies of Explosives and Precursors: Applications
and Instrumentation 251
Mary L. Lewis, Ian R. Lewis and Peter R. Griffiths
5.2.1 Background 251
5.2.2 Introduction 252
5.2.3 UV Excited Raman Studies of Explosives 253
5.2.4 FT-Raman Studies of Explosives 255
5.2.5 Neither FT-Raman nor Traditional Dispersive Raman 258
5.2.6 Surface Enhanced Raman and Surface Enhanced Resonance Raman Studies
of Explosives 258
5.2.7 Dispersive Raman Studies of Explosives 259
5.2.8 Compact Dispersive Raman Spectrometers for the Study of Explosives
260
5.2.9 Spatially Offset Raman Spectroscopy 265
5.2.10 Stand-Off Raman of Explosives 266
5.2.11 Raman Microscopy and Imaging 266
5.2.12 Vehicle-Mounted Raman Analysers 267
5.2.13 Classification Schema for Explosives 268
5.2.14 Summary 268
References 269
5.3 Handheld Raman and FT-IR Spectrometers 275
Michael D. Hargreaves, Robert L. Green, Wayne Jalenak, Christopher D. Brown
and Craig Gardner
5.3.1 Introduction 275
5.3.2 Handheld/Portable Raman and FT-IR Devices 276
5.3.3 Explosives 276
5.3.4 Tactical Considerations 277
5.3.5 Sample Considerations 279
5.3.6 Raman and FT-IR Spectroscopy Explosive Identification Capabilities
280
5.3.7 Performance Characterisation 285
5.3.8 Summary 285
Disclaimer 286
References 286
5.4 Non-Invasive Detection of Concealed Liquid and Powder Explosives using
Spatially Offset Raman spectroscopy 289
Kevin Buckley and Pavel Matousek
5.4.1 Introduction 289
5.4.2 Discussion and Examples 290
5.4.3 Summary 293
References 294
5.5 Terahertz Frequency Spectroscopy and its Potential for Security
Applications 295
A.D. Burnett, A.G. Davies, P. Dean, J.E. Cunningham and E.H. Linfield
5.5.1 Introduction 295
5.5.2 Terahertz Frequency Radiation 296
5.5.3 Terahertz Time-Domain Spectroscopy 296
5.5.4 Examples of the Use of THz Spectroscopy to Detect Materials of
Security Interest 298
5.5.5 Conclusions and Future Outlook 309
Acknowledgements 309
References 310
Section IV: Drugs and Drugs of Abuse 315
6 Raman Spectroscopy of Drugs of Abuse 317
Steven E.J. Bell, Samantha P. Stewart and S.J. Speers
6.1 Introduction 317
6.2 Bulk Drugs 317
6.2.1 General introduction 317
6.2.2 Experimental considerations 319
6.2.3 Laboratory-based methods 322
6.2.4 Raman outside the laboratory 326
6.3 Trace Detection 328
6.3.1 Drug microparticles 328
6.3.2 Surface-enhanced Raman spectroscopy 329
6.4 Conclusions 335
References 336
6.1 Drugs of Abuse - Application of Handheld FT-IR and Raman Spectrometers
339
Michael D. Hargreaves
6.1.1 Introduction 339
6.1.2 Advantages of Vibrational Spectroscopy 339
6.1.3 General Drugs of Abuse - Introduction 340
6.1.4 Vibrational Spectroscopy 340
6.1.5 Analysis of Street Samples 343
6.1.6 New Narcotic Threats 344
6.1.7 Identification of Drug Precursors 344
6.1.8 Case Studies 346
6.1.9 Conclusion 347
Disclaimer 348
References 348
6.2 Non-Invasive Detection of Illicit Drugs Using Spatially Offset Raman
Spectroscopy 351
Kevin Buckley and Pavel Matousek
6.2.1 Introduction 351
6.2.2 Application Examples 352
6.2.3 Summary 356
References 356
6.3 Detection of Drugs of Abuse Using Surface Enhanced Raman Scattering 357
Karen Faulds and W. Ewen Smith
6.3.1 Introduction 357
6.3.2 Substrates 358
6.3.3 Direct Detection 360
6.3.4 Indirect Detection 363
6.3.5 Conclusions 365
References 365
Section V: Art 367
7 Vibrational Spectroscopy as a Tool for Tracing Art Forgeries 369
A. Deneckere, P. Vandenabeele and L. Moens
7.1 Introduction 369
7.2 How to Trace Art Forgeries with Vibrational Spectroscopy? 371
7.2.1 Detection of anachronisms 371
7.2.2 Comparing with the artist's palette 375
7.2.3 Impurities 377
7.3 Conclusion 380
Acknowledgements 380
References 380
7.1 Identification of Dyes and Pigments by Vibrational Spectroscopy 383
Juan Manuel Madariaga
7.1.1 Introduction 383
7.1.2 Review of the Scientific Literature 384
7.1.3 Databases of Reference Materials 386
7.1.4 FT-IR and Raman Spectroscopy Applications 390
References 396
7.2 The Vinland Map: An Authentic Relic of Early Exploration or a Modern
Forgery - Raman Spectroscopy in a Pivotal Role? 401
Howell G.M. Edwards
7.2.1 Introduction 401
7.2.2 The Scientific Analysis of the Vinland Map and Tartar Relation 403
7.2.3 Raman Microspectroscopic Study 403
References 407
7.3 Study of Manuscripts by Vibrational Spectroscopy 409
Lucia Burgio
7.3.1 Introduction 409
7.3.2 Why Raman Microscopy? 410
7.3.3 Dating and Authentication 411
7.3.4 Provenance and Trade Routes 413
7.3.5 Infrared Spectroscopy 415
Acknowledgements 415
References 415
Section VI: Archaeology and Mineralogy 419
8 Infrared and Raman Spectroscopy: Forensic Applications in Mineralogy 421
J. Jehlicka
8.1 Introduction 421
8.2 Applications of Raman Spectroscopy for Provenancing 423
8.3 Raman Spectroscopy of Minerals 423
8.3.1 Class 1: Elements 423
8.3.2 Minerals from other groups of the mineralogical classification system
426
8.4 Opals 428
8.5 Natural Glass 428
8.6 Meteorites 429
8.7 Identification and Provenancing of Gemstones 430
8.7.1 Synthetic gemstones 431
8.7.2 Semi-precious minerals 431
8.7.3 Garnets 431
8.8 Common Minerals 433
8.8.1 Clays 433
8.9 Databases 434
8.10 Identification of Inclusions in Minerals 434
8.11 Raman Mapping Techniques 436
8.12 Analyses Outdoors and On Site 437
8.13 Applications of Raman Spectroscopy to the Provenancing of Rocks 438
8.14 Summary 438
Acknowledgements 439
References 439
8.1 Identification of Ivory by Conventional Backscatter Raman and SORS 447
Michael D. Hargreaves and Howell G.M. Edwards
8.1.1 Introduction 447
8.1.2 Application of Raman Spectroscopy 449
8.1.3 Conclusions 453
Disclaimer 453
References 454
8.2 Applications to the Study of Gems and Jewellery 455
Lore Kiefert, Marina Epelboym, Hpone-Phyo Kan-Nyunt and Susan Paralusz
8.2.1 Introduction 455
8.2.2 Case Study Example I: Mid-Infrared and Raman Spectroscopy of Diamonds
456
8.2.3 Case Study Example II: Detection of Fissure Fillings in Emeralds 458
8.2.4 Case Study Example III: The Raman Identification of Turquoise 464
8.2.5 Summary 466
Acknowledgements 467
References 467
8.3 Raman Spectroscopy of Ceramics and Glasses 469
Paola Ricciardi and Philippe Colomban
8.3.1 Introduction 469
8.3.2 How to Discriminate Between Genuine Artifacts and Copies and Fakes
470
8.3.3 On-Site Measurements and Procedures 472
8.3.4 Case Studies 474
8.3.5 Conclusions 478
References 478
8.4 Raman Spectroscopy at Longer Excitation Wavelengths Applied to the
Forensic Analysis of Archaeological Specimens: A Novel Aspect of Forensic
Geoscience 481
Howell G.M. Edwards
8.4.1 Introduction 481
8.4.2 Experimental 486
8.4.3 Results and Discussion 486
8.4.4 Human Tissues and Skeletal Remains 495
8.4.5 Conclusions 509
Acknowledgements 509
References 510
Section VII: Counterfeit Consumer Products 513
9 Counterfeit Consumer Products 515
Andrew J. O'Neil
9.1 Background 515
9.2 Anti-Counterfeiting Organisations 515
9.3 Definition of a Counterfeit Product 516
9.4 Counterfeit Product Spectroscopic Analysis 516
9.4.1 Counterfeit alcoholic beverages and whisky 517
9.4.2 Counterfeit stamps 518
9.4.3 Counterfeit currency 519
9.4.4 Counterfeit medicines 520
9.5 Case Studies Using Mid-infrared, Raman and Near-infrared Spectroscopies
and NIR Multispectral Imaging 529
9.6 Case Study I: Counterfeit Clothing 532
9.6.1 Case study Ia: counterfeit Burberry Classic Check Scarf 532
9.6.2 Case study Ib: counterfeit New Era 59fifty baseball caps 532
9.7 Case Study II: Counterfeit Aftershave 536
9.8 Case Study III: Counterfeit Medicines 540
9.8.1 Near-infrared spectrometry 542
9.8.2 Raman spectrometry 545
9.8.3 NIR Multispectral Imaging 547
9.9 Case Study IV: Counterfeit Product Packaging 549
9.9.1 ATR/FT-IR Spectroscopy 549
9.10 Case Study V: Counterfeit Royal Mail First Class Stamps 551
9.10.1 Near-infrared spectroscopic analysis 551
9.10.2 Near-infrared multispectral imaging 551
9.11 Case Study VI: Counterfeit Bank of England Banknotes 552
9.11.1 ATR/FT-IR Spectroscopic Analysis 552
9.11.2 NIR Multispectral Imaging 555
9.12 Conclusion 555
References 557
9.1 Raman Spectroscopy for the Analysis of Counterfeit Tablets 561
Kaho Kwok and Lynne S. Taylor
9.1.1 The Pharmaceutical Counterfeiting Problem 561
9.1.2 Analytical Techniques to Detect Counterfeit Products 562
9.1.3 Using Raman Spectroscopy to Characterise Genuine and Counterfeit
Tablets-A Case Study 563
9.1.4 Conclusions 571
Acknowledgements 571
References 571
9.2 Examination of Counterfeit Pharmaceutical Labels 573
Mark R. Witkowski and Mary W. Carrabba
9.2.1 Introduction 573
9.2.2 Counterfeit Packaging Analysis 574
9.2.3 Case Study I: Counterfeit Lipitor Ò Labels 574
9.2.4 Case Study II: Counterfeit Zyprexa Ò Labels 578
9.2.5 Conclusion 581
Disclaimer 582
Acknowledgements 582
References 582
9.3 Vibrational Spectroscopy for "Food Forensics" 583
Victoria L. Brewster and Royston Goodacre
9.3.1 Introduction 583
9.3.2 Adulteration 584
9.3.3 Provenance 587
9.3.4 Food Spoilage 587
9.3.5 Micro-Organism Identification 588
9.3.6 Conclusion 589
Acknowledgements 589
References 589
9.4 Infrared Spectroscopy for the Detection of Adulteration in Foods 593
Banu Özen and Figen Tokatli
9.4.1 Introduction 593
9.4.2 Adulteration of Food Products and Application of IR Spectroscopy in
the Detection of Adulteration 594
9.4.3 Case Study: Adulteration of Extra Virgin Olive Oils with Refined
Hazelnut Oil 596
9.4.4 Summary 599
References 599
Index 603