Pierre-Richard Dahoo, Azzedine Lakhlifi
Infrared Spectroscopy of Symmetric and Spherical Spindles for Space Observation, Volume 2 (eBook, PDF)
139,99 €
139,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
139,99 €
Als Download kaufen
139,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
139,99 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
0 °P sammeln
Pierre-Richard Dahoo, Azzedine Lakhlifi
Infrared Spectroscopy of Symmetric and Spherical Spindles for Space Observation, Volume 2 (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 11.55MB
Andere Kunden interessierten sich auch für
- Pierre-Richard DahooInfrared Spectroscopy of Symmetric and Spherical Spindles for Space Observation 1 (eBook, PDF)139,99 €
- Pierre-Richard DahooInfrared Spectroscopy of Symmetric and Spherical Top Molecules for Space Observation, Volume 2 (eBook, ePUB)139,99 €
- Pierre-Richard DahooInfrared Spectroscopy of Symmetric and Spherical Spindles for Space Observation 1 (eBook, ePUB)139,99 €
- Robin A. de GraafIn Vivo NMR Spectroscopy (eBook, PDF)120,99 €
- Andre S. MerbachThe Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging (eBook, PDF)165,99 €
- Two-Dimensional (2D) NMR Methods (eBook, PDF)172,99 €
- Joseph B. LambertNuclear Magnetic Resonance Spectroscopy (eBook, PDF)66,99 €
-
-
-
Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 320
- Erscheinungstermin: 13. September 2021
- Englisch
- ISBN-13: 9781119865964
- Artikelnr.: 62736765
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Pierre-Richard Dahoo is Professor and Holder of the Chair Materials Simulation and Engineering at the University of Versailles Saint-Quentin in France. He is Director of Institut des Sciences et Techniques des Yvelines and a specialist in modeling and spectroscopy at the LATMOS laboratory of CNRS. Azzedine Lakhlifi is Senior Lecturer at the Faculty of Sciences and Techniques of University of Franche-Comte and a researcher, specializing in modeling and spectroscopy at UTINAM Institute, UMR 6213 CNRS, OSU THETA Franche-Comte Bourgogne, University Bourgogne Franche-Comte, Besancon, France.
Foreword ix
Pierre DROSSART
Preface xi
Chapter 1. IR Spectra in Space Observation 1
1.1. Introduction 1
1.2. Fourier transform spectroscopy 7
1.2.1. Principle of IR spectrum acquisition by interferometry 9
1.2.2. Design and operation of a long path difference interferometer 11
1.2.3. FTIR absorption spectroscopy in matrices 14
1.2.4. LIF and DR IR-IR spectroscopies in matrices 21
1.3. Resonant cavity laser absorption spectroscopy 26
1.3.1. Intracavity laser absorption spectroscopy (ICLAS) 30
1.3.2. Cavity ring-down spectroscopy (CRDS) 33
1.3.3. Frequency comb spectroscopy (FCS) 38
1.4. Spectroscopy for space observation 43
1.4.1. Spectroscopic ellipsometry for space observation 43
1.4.2. Space-borne spectroscopy 56
1.4.3. LIDAR spectroscopy for space observation 60
1.5. Conclusion 64
1.6. Appendices 64
1.6.1. Appendix 1: Measurement distortion and data processing 64
Chapter 2. Interactions Between a Molecule and Its Solid Environment 71
2.1. Introduction 72
2.2. Active molecule - solid environment system 74
2.2.1. Binary interaction energy 74
2.2.2. Dispersion-repulsion contribution 76
2.2.3. Electrostatic contribution 76
2.2.4. Induction contribution 78
2.3. Two-center expansion of the term 79
2.4. Conclusion 81
2.5. Appendices 82
2.5.1. Appendix 1: Multipole moments and dipole polarizability of a molecule with respect to its fixed reference frame 82
2.5.2. Appendix 2: Elements of the rotational matrix 82
2.5.3. Appendix 3: Clebsch-Gordan coefficients 84
Chapter 3. Nanocage of Rare Gas Matrix 87
3.1. Introduction 87
3.2. Rare gases in solid state 88
3.3. Molecule inclusion and deformation of the doped crystal 90
3.3.1. Molecule inclusion 90
3.3.2. Deformation of the doped crystal 92
3.3.3. NH3 in an argon matrix 95
3.3.4. Renormalization of the system's Hamiltonian 96
3.4. Motions of NH3 trapped in an argon matrix 97
3.4.1. Vibration-inversion mode nu2 98
3.4.2. Orientational motion 100
3.4.3. Translational motion 106
3.4.4. Orientational motion-heat bath coupling 107
3.5. Infrared spectra 108
3.5.1. Infrared absorption coefficient 108
3.5.2. Bar spectrum 109
3.5.3. Spectral profile 112
3.6. Appendices 116
3.6.1. Appendix 1: Normal modes of vibrations of a Bravais lattice with face centered cubic (fcc) symmetry 116
3.6.2. Appendix 2: Adjustment of the weakly perturbed rotational potential energy on the basis of the rotation matrix elements 120
3.6.3. Appendix 3: Expansion coefficients of the coupling between the orientation of the molecule and lattice vibrations (phonons) 121
Chapter 4. Nanocages of Hydrate Clathrates 123
4.1. Introduction 123
4.2. The extended substitution model 124
4.3. Clathrate structures 129
4.4. Inclusion of a CH4 or NH3 molecule in a clathrate nanocage 131
4.4.1. Inclusion model 131
4.4.2. Interaction potential energy - equilibrium configuration 133
4.5. System Hamiltonian and separation of movements 136
4.6. Translational motion 139
4.6.1. CH4 - nanocages of the sI structure 140
4.6.2. NH3 - nanocages of the sI structure 141
4.7. Vibrational motions 142
4.7.1. CH4 - nanocages of the sI structure 143
4.7.2. NH3 - nanocages of the sI structure 14
Pierre DROSSART
Preface xi
Chapter 1. IR Spectra in Space Observation 1
1.1. Introduction 1
1.2. Fourier transform spectroscopy 7
1.2.1. Principle of IR spectrum acquisition by interferometry 9
1.2.2. Design and operation of a long path difference interferometer 11
1.2.3. FTIR absorption spectroscopy in matrices 14
1.2.4. LIF and DR IR-IR spectroscopies in matrices 21
1.3. Resonant cavity laser absorption spectroscopy 26
1.3.1. Intracavity laser absorption spectroscopy (ICLAS) 30
1.3.2. Cavity ring-down spectroscopy (CRDS) 33
1.3.3. Frequency comb spectroscopy (FCS) 38
1.4. Spectroscopy for space observation 43
1.4.1. Spectroscopic ellipsometry for space observation 43
1.4.2. Space-borne spectroscopy 56
1.4.3. LIDAR spectroscopy for space observation 60
1.5. Conclusion 64
1.6. Appendices 64
1.6.1. Appendix 1: Measurement distortion and data processing 64
Chapter 2. Interactions Between a Molecule and Its Solid Environment 71
2.1. Introduction 72
2.2. Active molecule - solid environment system 74
2.2.1. Binary interaction energy 74
2.2.2. Dispersion-repulsion contribution 76
2.2.3. Electrostatic contribution 76
2.2.4. Induction contribution 78
2.3. Two-center expansion of the term 79
2.4. Conclusion 81
2.5. Appendices 82
2.5.1. Appendix 1: Multipole moments and dipole polarizability of a molecule with respect to its fixed reference frame 82
2.5.2. Appendix 2: Elements of the rotational matrix 82
2.5.3. Appendix 3: Clebsch-Gordan coefficients 84
Chapter 3. Nanocage of Rare Gas Matrix 87
3.1. Introduction 87
3.2. Rare gases in solid state 88
3.3. Molecule inclusion and deformation of the doped crystal 90
3.3.1. Molecule inclusion 90
3.3.2. Deformation of the doped crystal 92
3.3.3. NH3 in an argon matrix 95
3.3.4. Renormalization of the system's Hamiltonian 96
3.4. Motions of NH3 trapped in an argon matrix 97
3.4.1. Vibration-inversion mode nu2 98
3.4.2. Orientational motion 100
3.4.3. Translational motion 106
3.4.4. Orientational motion-heat bath coupling 107
3.5. Infrared spectra 108
3.5.1. Infrared absorption coefficient 108
3.5.2. Bar spectrum 109
3.5.3. Spectral profile 112
3.6. Appendices 116
3.6.1. Appendix 1: Normal modes of vibrations of a Bravais lattice with face centered cubic (fcc) symmetry 116
3.6.2. Appendix 2: Adjustment of the weakly perturbed rotational potential energy on the basis of the rotation matrix elements 120
3.6.3. Appendix 3: Expansion coefficients of the coupling between the orientation of the molecule and lattice vibrations (phonons) 121
Chapter 4. Nanocages of Hydrate Clathrates 123
4.1. Introduction 123
4.2. The extended substitution model 124
4.3. Clathrate structures 129
4.4. Inclusion of a CH4 or NH3 molecule in a clathrate nanocage 131
4.4.1. Inclusion model 131
4.4.2. Interaction potential energy - equilibrium configuration 133
4.5. System Hamiltonian and separation of movements 136
4.6. Translational motion 139
4.6.1. CH4 - nanocages of the sI structure 140
4.6.2. NH3 - nanocages of the sI structure 141
4.7. Vibrational motions 142
4.7.1. CH4 - nanocages of the sI structure 143
4.7.2. NH3 - nanocages of the sI structure 14
Foreword ix
Pierre DROSSART
Preface xi
Chapter 1. IR Spectra in Space Observation 1
1.1. Introduction 1
1.2. Fourier transform spectroscopy 7
1.2.1. Principle of IR spectrum acquisition by interferometry 9
1.2.2. Design and operation of a long path difference interferometer 11
1.2.3. FTIR absorption spectroscopy in matrices 14
1.2.4. LIF and DR IR-IR spectroscopies in matrices 21
1.3. Resonant cavity laser absorption spectroscopy 26
1.3.1. Intracavity laser absorption spectroscopy (ICLAS) 30
1.3.2. Cavity ring-down spectroscopy (CRDS) 33
1.3.3. Frequency comb spectroscopy (FCS) 38
1.4. Spectroscopy for space observation 43
1.4.1. Spectroscopic ellipsometry for space observation 43
1.4.2. Space-borne spectroscopy 56
1.4.3. LIDAR spectroscopy for space observation 60
1.5. Conclusion 64
1.6. Appendices 64
1.6.1. Appendix 1: Measurement distortion and data processing 64
Chapter 2. Interactions Between a Molecule and Its Solid Environment 71
2.1. Introduction 72
2.2. Active molecule - solid environment system 74
2.2.1. Binary interaction energy 74
2.2.2. Dispersion-repulsion contribution 76
2.2.3. Electrostatic contribution 76
2.2.4. Induction contribution 78
2.3. Two-center expansion of the term 79
2.4. Conclusion 81
2.5. Appendices 82
2.5.1. Appendix 1: Multipole moments and dipole polarizability of a molecule with respect to its fixed reference frame 82
2.5.2. Appendix 2: Elements of the rotational matrix 82
2.5.3. Appendix 3: Clebsch-Gordan coefficients 84
Chapter 3. Nanocage of Rare Gas Matrix 87
3.1. Introduction 87
3.2. Rare gases in solid state 88
3.3. Molecule inclusion and deformation of the doped crystal 90
3.3.1. Molecule inclusion 90
3.3.2. Deformation of the doped crystal 92
3.3.3. NH3 in an argon matrix 95
3.3.4. Renormalization of the system's Hamiltonian 96
3.4. Motions of NH3 trapped in an argon matrix 97
3.4.1. Vibration-inversion mode nu2 98
3.4.2. Orientational motion 100
3.4.3. Translational motion 106
3.4.4. Orientational motion-heat bath coupling 107
3.5. Infrared spectra 108
3.5.1. Infrared absorption coefficient 108
3.5.2. Bar spectrum 109
3.5.3. Spectral profile 112
3.6. Appendices 116
3.6.1. Appendix 1: Normal modes of vibrations of a Bravais lattice with face centered cubic (fcc) symmetry 116
3.6.2. Appendix 2: Adjustment of the weakly perturbed rotational potential energy on the basis of the rotation matrix elements 120
3.6.3. Appendix 3: Expansion coefficients of the coupling between the orientation of the molecule and lattice vibrations (phonons) 121
Chapter 4. Nanocages of Hydrate Clathrates 123
4.1. Introduction 123
4.2. The extended substitution model 124
4.3. Clathrate structures 129
4.4. Inclusion of a CH4 or NH3 molecule in a clathrate nanocage 131
4.4.1. Inclusion model 131
4.4.2. Interaction potential energy - equilibrium configuration 133
4.5. System Hamiltonian and separation of movements 136
4.6. Translational motion 139
4.6.1. CH4 - nanocages of the sI structure 140
4.6.2. NH3 - nanocages of the sI structure 141
4.7. Vibrational motions 142
4.7.1. CH4 - nanocages of the sI structure 143
4.7.2. NH3 - nanocages of the sI structure 14
Pierre DROSSART
Preface xi
Chapter 1. IR Spectra in Space Observation 1
1.1. Introduction 1
1.2. Fourier transform spectroscopy 7
1.2.1. Principle of IR spectrum acquisition by interferometry 9
1.2.2. Design and operation of a long path difference interferometer 11
1.2.3. FTIR absorption spectroscopy in matrices 14
1.2.4. LIF and DR IR-IR spectroscopies in matrices 21
1.3. Resonant cavity laser absorption spectroscopy 26
1.3.1. Intracavity laser absorption spectroscopy (ICLAS) 30
1.3.2. Cavity ring-down spectroscopy (CRDS) 33
1.3.3. Frequency comb spectroscopy (FCS) 38
1.4. Spectroscopy for space observation 43
1.4.1. Spectroscopic ellipsometry for space observation 43
1.4.2. Space-borne spectroscopy 56
1.4.3. LIDAR spectroscopy for space observation 60
1.5. Conclusion 64
1.6. Appendices 64
1.6.1. Appendix 1: Measurement distortion and data processing 64
Chapter 2. Interactions Between a Molecule and Its Solid Environment 71
2.1. Introduction 72
2.2. Active molecule - solid environment system 74
2.2.1. Binary interaction energy 74
2.2.2. Dispersion-repulsion contribution 76
2.2.3. Electrostatic contribution 76
2.2.4. Induction contribution 78
2.3. Two-center expansion of the term 79
2.4. Conclusion 81
2.5. Appendices 82
2.5.1. Appendix 1: Multipole moments and dipole polarizability of a molecule with respect to its fixed reference frame 82
2.5.2. Appendix 2: Elements of the rotational matrix 82
2.5.3. Appendix 3: Clebsch-Gordan coefficients 84
Chapter 3. Nanocage of Rare Gas Matrix 87
3.1. Introduction 87
3.2. Rare gases in solid state 88
3.3. Molecule inclusion and deformation of the doped crystal 90
3.3.1. Molecule inclusion 90
3.3.2. Deformation of the doped crystal 92
3.3.3. NH3 in an argon matrix 95
3.3.4. Renormalization of the system's Hamiltonian 96
3.4. Motions of NH3 trapped in an argon matrix 97
3.4.1. Vibration-inversion mode nu2 98
3.4.2. Orientational motion 100
3.4.3. Translational motion 106
3.4.4. Orientational motion-heat bath coupling 107
3.5. Infrared spectra 108
3.5.1. Infrared absorption coefficient 108
3.5.2. Bar spectrum 109
3.5.3. Spectral profile 112
3.6. Appendices 116
3.6.1. Appendix 1: Normal modes of vibrations of a Bravais lattice with face centered cubic (fcc) symmetry 116
3.6.2. Appendix 2: Adjustment of the weakly perturbed rotational potential energy on the basis of the rotation matrix elements 120
3.6.3. Appendix 3: Expansion coefficients of the coupling between the orientation of the molecule and lattice vibrations (phonons) 121
Chapter 4. Nanocages of Hydrate Clathrates 123
4.1. Introduction 123
4.2. The extended substitution model 124
4.3. Clathrate structures 129
4.4. Inclusion of a CH4 or NH3 molecule in a clathrate nanocage 131
4.4.1. Inclusion model 131
4.4.2. Interaction potential energy - equilibrium configuration 133
4.5. System Hamiltonian and separation of movements 136
4.6. Translational motion 139
4.6.1. CH4 - nanocages of the sI structure 140
4.6.2. NH3 - nanocages of the sI structure 141
4.7. Vibrational motions 142
4.7.1. CH4 - nanocages of the sI structure 143
4.7.2. NH3 - nanocages of the sI structure 14