99,95 €
99,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
50 °P sammeln
99,95 €
99,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
50 °P sammeln
Als Download kaufen
99,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
50 °P sammeln
Jetzt verschenken
99,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
50 °P sammeln
  • Format: PDF

The development of new scintillators as components of modern detector systems is increasingly defined by the end user's needs. This book provides an introduction to this emerging topic at the interface of physics and materials sciences, with emphasis on bulk inorganic scintillators. After surveying the end user's needs in a vast range of applications, ranging from astrophysics to industrial R & D, the authors move on to review scintillating mechanisms and the properties of the most important materials used. A chapter on crystal engineering and examples of recent developments in the field of…mehr

Produktbeschreibung
The development of new scintillators as components of modern detector systems is increasingly defined by the end user's needs. This book provides an introduction to this emerging topic at the interface of physics and materials sciences, with emphasis on bulk inorganic scintillators. After surveying the end user's needs in a vast range of applications, ranging from astrophysics to industrial R & D, the authors move on to review scintillating mechanisms and the properties of the most important materials used. A chapter on crystal engineering and examples of recent developments in the field of high-energy physics and medical imaging introduce the reader to the practical aspects. This book will benefit researchers and scientists working in academic and industrial R & D related to the development of scintillators.


Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Paul Rene Michel Lecoq received his diploma as Engineer in Physics Instrumentation at the Ecole Polytechnique de Grenoble in 1972, under the leadership of Nobel Laureate Louis Neel. After two years of work at the Nuclear Physics laboratory of the University of Montreal, Canada, he got his PhD in Nuclear Physics in 1974. Since then he has been working at CERN in 5 major international experiments on particle physics, one of them led by Nobel Laureates Samuel Ting. His action on detector instrumentation, and particularly on heavy inorganic scintillator materials has received a strong support from Nobel Laureates Carlo Rubbia and Georges Charpak. He has been the technical coordinator of the electromagnetic calorimeter of the CMS experiment at CERN, which played an important role in the discovery of the Higgs boson. Member of a number of advisory committees and of international Societies, he is the promoter since 2002 of the CERIMED.NET initiative (European Center for Research in MedicalImaging) for networking physics and medicine in the field of medical imaging. He has been awarded an ERC advanced grant in 2013 by the European Research Council. He has been elected in 2008 member of the European Academy of Sciences and elevated in 2015 to the IEEE fellow grade. Alexander Gektin received his diploma after graduating at the Physical faculty of Kharkov university. His PhD thesis (1981) was devoted to defects study in halide crystals. He got his DrSci degree in 1990 (Riga, Latvia) when he investigated the influence of high irradiation doses to crystals. During the last two decades he took part as a renowned scintillation material scientist to several international projects like BELLE, BaBar, PiBeta, CMS in high energy physics, GLAST and AGILLE in astrophysics. At the same time he has led several developments for medical imaging (large area SPECT scintillator) and security systems (600 mm long position sensitive detectors).The major part of these technology developments was transferred to different industrial production lines. At the same time he is known as an expert in the study of fundamental processes of energy absorption, relaxation and light emission in scintillation materials. He has authored more then 250 publications. He is also an Associated Editor of IEEE Transaction of Nuclear Sciences. Mikhail Korzhik (Korjik) received his diploma in Physics at the Belarus State University in 1981. He got his PhD in 1991 and Doctoral Diploma in 2005 in Nuclear Physics and Optics. Since the beginning of nineties he was deeply involved in research and development of inorganic scintillation materials. He was instrumental in the development of the YAlO3:Ce technology for low energy gamma-rays detection. An important achievement has been the discovery of  Pr3+ doped scintillation media and GdAlO3:Ce and LuAlO3:Ce scintillation materials. His study promoted the understanding of scintillation mechanismin many crystals. He took part in the discovery and mass production technology development of the lead tungstate PbWO4 scintillation crystal for high energy physics application, which resulted in the use of this crystal in two ambitious experiments at LHC, CMS and ALICE and an important contribution to the discovery of the Higgs boson. He is member of the Scientific Advisory Committee of the SCINT cycle of International Conferences dedicated to scintillation materials development.