This book presents the most common types of instabilities arising in classical field theories, namely tachyonic, Laplacian, ghost-like or strong coupling instabilities, also commenting on their quantum implications. The authors provide a detailed account on the Ostrogradski theorem and its implications for higher-order time-derivative field theories. After presenting the general concepts and formalism, they dive into its applications to particular field theories, using mainly modified gravity theories as examples. The book is intended for advanced undergraduate/graduate students, but can also be useful for researchers, for having a unified exposition of general results on instabilities in field theory and examples of their applications.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
"This book is a good resource for colleagues working in the model-building sector within gravitational theories since throughout, they can inspect their results for instabilities before moving to the relevant astrophysical applications." (Daniele Gregoris, Mathematical Reviews, July, 2024)