Perelomov
Integrable Systems of Classical Mechanics and Lie Algebras Volume I (eBook, PDF)
61,95 €
61,95 €
inkl. MwSt.
Sofort per Download lieferbar
31 °P sammeln
61,95 €
Als Download kaufen
61,95 €
inkl. MwSt.
Sofort per Download lieferbar
31 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
61,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
31 °P sammeln
Perelomov
Integrable Systems of Classical Mechanics and Lie Algebras Volume I (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 32.49MB
Andere Kunden interessierten sich auch für
- Petre P. TeodorescuMechanical Systems, Classical Models (eBook, PDF)161,95 €
- Petre P. TeodorescuMechanical Systems, Classical Models (eBook, PDF)161,95 €
- Petre P. TeodorescuMechanical Systems, Classical Models (eBook, PDF)161,95 €
- Walter GreinerClassical Mechanics (eBook, PDF)73,95 €
- Howard GeorgiLie Algebras In Particle Physics (eBook, PDF)0,99 €
- J. GlimmQuantum Physics (eBook, PDF)62,95 €
- Romansy 14 (eBook, PDF)73,95 €
-
-
-
Produktdetails
- Verlag: Springer Basel
- Seitenzahl: 308
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9783034892575
- Artikelnr.: 53151676
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1. Preliminaries.- 1.1 A Simple Example: Motion in a Potential Field.- 1.2 Poisson Structure and Hamiltonian Systems.- 1.3 Symplectic Manifolds.- 1.4 Homogeneous Symplectic Spaces.- 1.5 The Moment Map.- 1.6 Hamiltonian Systems with Symmetry.- 1.7 Reduction of Hamiltonian Systems with Symmetry.- 1.8 Integrable Hamiltonian Systems.- 1.9 The Projection Method.- 1.10 The Isospectral Deformation Method.- 1.11 Hamiltonian Systems on Coadjoint Orbits of Lie Groups.- 1.12 Constructions of Hamiltonian Systems with Large Families of Integrals of Motion.- 1.13 Completeness of Involutive Systems.- 1.14 Hamiltonian Systems and Algebraic Curves.- 2. Simplest Systems.- 2.1 Systems with One Degree of Freedom.- 2.2 Systems with Two Degrees of Freedom.- 2.3 Separation of Variables.- 2.4 Systems with Quadratic Integrals of Motion.- 2.5 Motion in a Central Field.- 2.6 Systems with Closed Trajectories.- 2.7 The Harmonic Oscillator.- 2.8 The Kepler Problem.- 2.9 Motion in Coupled Newtonian and Homogeneous Fields.- 2.10 Motion in the Field of Two Newtonian Centers.- 3. Many-Body Systems.- 3.1 Lax Representation for Many-Body Systems.- 3.2 Completely Integrable Many-Body Systems.- 3.3 Explicit Integration of the Equations of Motion for Systems of Type I and V via the Projection Method.- 3.4 Relationship Between the Solutions of the Equations of Motion for Systems of Type I and V.- 3.5 Explicit Integration of the Equations of Motion for Systems of Type II and III.- 3.6 Integration of the Equations of Motion for Systems with Two Types of Particles.- 3.7 Many-Body Systems as Reduced Systems.- 3.8 Generalizations of Many-Body Systems of Type I-III to the Case of the Root Systems of Simple Lie Algebras.- 3.9 Complete Integrability of the Systems of Section 3.8.- 3.10 Anisotropic Harmonic Oscillatorin the Field of a Quartic Central Potential (the Garnier System).- 3.11 A Family of Integrable Quartic Potentials Related to Symmetric Spaces.- 4. The Toda Lattice.- 4.1 The Ordinary Toda Lattice. Lax Representation. Complete Integrability.- 4.2 The Toda Lattice as a Dynamical System on a Coadjoint Orbit of the Group of Triangular Matrices.- 4.3 Explicit Integration of the Equations of Motion for the Ordinary Nonperiodic Toda Lattice.- 4.4 The Toda Lattice as a Reduced System.- 4.5 Generalized Nonperiodic Toda Lattices Related to Simple Lie Algebras.- 4.6 Toda-like Systems on Coadjoint Orbits of Borel Subgroups.- 4.7 Canonical Coordinates for Systems of Toda Type.- 4.8 Integrability of Toda-like Systems on Generic Orbits.- 5. Miscellanea.- 5.1 Equilibrium Configurations and Small Oscillations of Some Integrable Hamiltonian Systems.- 5.2 Motion of the Poles of Solutions of Nonlinear Evolution Equations and Related Many-Body Problems.- 5.3 Motion of the Zeros of Solutions of Linear Evolution Equations and Related Many-Body Problems.- 5.4 Concluding Remarks.- Appendix A.- Examples of Symplectic Non-Kählerian Manifolds.- Appendix B.- Solution of the Functional Equation (3.1.9).- Appendix C.- Semisimple Lie Algebras and Root Systems.- Appendix D.- Symmetric Spaces.- References.
1. Preliminaries.- 1.1 A Simple Example: Motion in a Potential Field.- 1.2 Poisson Structure and Hamiltonian Systems.- 1.3 Symplectic Manifolds.- 1.4 Homogeneous Symplectic Spaces.- 1.5 The Moment Map.- 1.6 Hamiltonian Systems with Symmetry.- 1.7 Reduction of Hamiltonian Systems with Symmetry.- 1.8 Integrable Hamiltonian Systems.- 1.9 The Projection Method.- 1.10 The Isospectral Deformation Method.- 1.11 Hamiltonian Systems on Coadjoint Orbits of Lie Groups.- 1.12 Constructions of Hamiltonian Systems with Large Families of Integrals of Motion.- 1.13 Completeness of Involutive Systems.- 1.14 Hamiltonian Systems and Algebraic Curves.- 2. Simplest Systems.- 2.1 Systems with One Degree of Freedom.- 2.2 Systems with Two Degrees of Freedom.- 2.3 Separation of Variables.- 2.4 Systems with Quadratic Integrals of Motion.- 2.5 Motion in a Central Field.- 2.6 Systems with Closed Trajectories.- 2.7 The Harmonic Oscillator.- 2.8 The Kepler Problem.- 2.9 Motion in Coupled Newtonian and Homogeneous Fields.- 2.10 Motion in the Field of Two Newtonian Centers.- 3. Many-Body Systems.- 3.1 Lax Representation for Many-Body Systems.- 3.2 Completely Integrable Many-Body Systems.- 3.3 Explicit Integration of the Equations of Motion for Systems of Type I and V via the Projection Method.- 3.4 Relationship Between the Solutions of the Equations of Motion for Systems of Type I and V.- 3.5 Explicit Integration of the Equations of Motion for Systems of Type II and III.- 3.6 Integration of the Equations of Motion for Systems with Two Types of Particles.- 3.7 Many-Body Systems as Reduced Systems.- 3.8 Generalizations of Many-Body Systems of Type I-III to the Case of the Root Systems of Simple Lie Algebras.- 3.9 Complete Integrability of the Systems of Section 3.8.- 3.10 Anisotropic Harmonic Oscillatorin the Field of a Quartic Central Potential (the Garnier System).- 3.11 A Family of Integrable Quartic Potentials Related to Symmetric Spaces.- 4. The Toda Lattice.- 4.1 The Ordinary Toda Lattice. Lax Representation. Complete Integrability.- 4.2 The Toda Lattice as a Dynamical System on a Coadjoint Orbit of the Group of Triangular Matrices.- 4.3 Explicit Integration of the Equations of Motion for the Ordinary Nonperiodic Toda Lattice.- 4.4 The Toda Lattice as a Reduced System.- 4.5 Generalized Nonperiodic Toda Lattices Related to Simple Lie Algebras.- 4.6 Toda-like Systems on Coadjoint Orbits of Borel Subgroups.- 4.7 Canonical Coordinates for Systems of Toda Type.- 4.8 Integrability of Toda-like Systems on Generic Orbits.- 5. Miscellanea.- 5.1 Equilibrium Configurations and Small Oscillations of Some Integrable Hamiltonian Systems.- 5.2 Motion of the Poles of Solutions of Nonlinear Evolution Equations and Related Many-Body Problems.- 5.3 Motion of the Zeros of Solutions of Linear Evolution Equations and Related Many-Body Problems.- 5.4 Concluding Remarks.- Appendix A.- Examples of Symplectic Non-Kählerian Manifolds.- Appendix B.- Solution of the Functional Equation (3.1.9).- Appendix C.- Semisimple Lie Algebras and Root Systems.- Appendix D.- Symmetric Spaces.- References.