147,95 €
147,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
74 °P sammeln
147,95 €
147,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
74 °P sammeln
Als Download kaufen
147,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
74 °P sammeln
Jetzt verschenken
147,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
74 °P sammeln
  • Format: ePub

Current wastewater treatment technologies are not sustainable simply due to their high operational costs and process inefficiency. Integrated Microbial Fuel Cells for Wastewater Treatment is intended for professionals who are searching for an innovative method to improve the efficiencies of wastewater treatment processes by exploiting the potential of Microbial Fuel Cells (MFCs) technology.
The book is broadly divided into four sections. It begins with an overview of the "state of the art" bioelectrochemical systems (BESs) as well as the fundamentals of MFC technology and its potential to
…mehr

Produktbeschreibung
Current wastewater treatment technologies are not sustainable simply due to their high operational costs and process inefficiency. Integrated Microbial Fuel Cells for Wastewater Treatment is intended for professionals who are searching for an innovative method to improve the efficiencies of wastewater treatment processes by exploiting the potential of Microbial Fuel Cells (MFCs) technology.

The book is broadly divided into four sections. It begins with an overview of the "state of the art" bioelectrochemical systems (BESs) as well as the fundamentals of MFC technology and its potential to enhance wastewater treatment efficiencies and reduce electricity generation cost. In section two, discusses the integration, installation, and optimization of MFC into conventional wastewater treatment processes such as activated sludge process, lagoons, constructed wetlands, and membrane bioreactors. Section three outlines integrations of MFCs into other wastewater processes. The final section provides explorative studies of MFC integrated systems for large scale wastewater treatment and the challenges which are inherent in the upscaling process.

  • Clearly describes the latest techniques for integrating MFC into traditional wastewater treatment processes such as activated sludge process, lagoons, constructed wetlands, and membrane bioreactors
  • Discusses the fundamentals of bioelectrochemical systems for degrading the contaminants from the municipal and industrial wastewater
  • Covers methods for the optimization of integrated systems

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Dr. Rouzbeh Abbassi is an Associate Professor and the Director of Research at the School of Engineering at Macquarie University, in Sydney, Australia. After completing his PhD from Memorial University (Canada) in 2010, he held postdoctoral fellow positions at Memorial University and Princeton University (USA), before serving as a senior lecturer at the University of Tasmania (Australia). Dr. Abbassi is founder and former discipline leader for the Bachelor of Civil Engineering program at Macquarie University. He is internationally recognized for his research in risk and safety engineering and its application to diverse energy operations, authoring over 200 papers in this field, with over 8,000 citations, and holds editorial roles with various journals. Throughout his career, he has led and contributed to various industry-based projects and notably spearheads Macquarie University's involvement in the $329M BlueEconomy CRC, which focuses on offshore renewable energy and aquaculture facilities.Asheesh Kumar Yadav is a Principal Scientist and Associate Professor at CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, India. He completed his doctoral study at the Indian Institute of Technology Delhi and postdoctoral studies at Princeton University, Princeton, NJ, USA. Currently, he is working as Marie Curie Fellow at Rey Juan Carlos, Madrid, Spain. He is the pioneer of constructed wetlands coupled microbial Electrochemical technology (CW-MET) for energy production, wastewater treatment, and other environmental applications. He received numerous awards like Marie Curie Fellowship; Indo-American Research Professorship (American Society of Microbiology); Four times winner of Erasmus Mundus Scholar Awards for teaching and research in universities in Germany, Poland, Sweden, Portugal; Winner of VLIR scholarships of Belgium; and Nuffic fellowship of the Netherlands. Besides this, He got an adjunct faculty position at the University of Tasmania, Australia. He is interested in developing low-cost energy generating and saving wastewater treatment systems with capabilities of resource recovery. Moreover, he is invested in developing circularity and sustainability in water and wastewater treatment systems.