Intelligent Renewable Energy Systems (eBook, PDF)
Integrating Artificial Intelligence Techniques and Optimization Algorithms
Redaktion: Priyadarshi, Neeraj; Holm-Nielsen, Jens Bo; Balamurugan, S.; Sanjeevikumar, P.; Bhoi, Akash Kumar
Alle Infos zum eBook verschenken
Intelligent Renewable Energy Systems (eBook, PDF)
Integrating Artificial Intelligence Techniques and Optimization Algorithms
Redaktion: Priyadarshi, Neeraj; Holm-Nielsen, Jens Bo; Balamurugan, S.; Sanjeevikumar, P.; Bhoi, Akash Kumar
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
INTELLIGENT RENEWABLE ENERGY SYSTEMS This collection of papers on artificial intelligence and other methods for improving renewable energy systems, written by industry experts, is a reflection of the state of the art, a must-have for engineers, maintenance personnel, students, and anyone else wanting to stay abreast with current energy systems concepts and technology. Renewable energy is one of the most important subjects being studied, researched, and advanced in today's world. From a macro level, like the stabilization of the entire world's economy, to the micro level, like how you are going…mehr
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 14.91MB
- Artificial Intelligence for Renewable Energy and Climate Change (eBook, PDF)236,99 €
- Artificial Intelligence for Renewable Energy Systems (eBook, PDF)164,99 €
- Artificial Intelligence and Internet of Things for Renewable Energy Systems (eBook, PDF)105,95 €
- Intelligent Paradigms for Smart Grid and Renewable Energy Systems (eBook, PDF)137,95 €
- Soft Computing in Renewable Energy Technologies (eBook, PDF)52,95 €
- IoT-Enabled Energy Efficiency Assessment of Renewable Energy Systems and Micro-grids in Smart Cities (eBook, PDF)145,95 €
- Advanced Computational Techniques for Renewable Energy Systems (eBook, PDF)177,95 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 480
- Erscheinungstermin: 21. Dezember 2021
- Englisch
- ISBN-13: 9781119786290
- Artikelnr.: 63207565
- Verlag: John Wiley & Sons
- Seitenzahl: 480
- Erscheinungstermin: 21. Dezember 2021
- Englisch
- ISBN-13: 9781119786290
- Artikelnr.: 63207565
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1 Optimization Algorithm for Renewable Energy Integration 1
Bikash Das, SoumyabrataBarik, Debapriya Das and V Mukherjee
1.1 Introduction 2
1.2 Mixed Discrete SPBO 5
1.2.1 SPBO Algorithm 5
1.2.2 Performance of SPBO for Solving Benchmark Functions 8
1.2.3 Mixed Discrete SPBO 11
1.3 Problem Formulation 12
1.3.1 Objective Functions 12
1.3.2 Technical Constraints Considered 14
1.4 Comparison of the SPBO Algorithm in Terms of CEC-2005 Benchmark
Functions 17
1.5 Optimum Placement of RDG and Shunt Capacitor to the Distribution
Network 18
1.5.1 Optimum Placement of RDGs and Shunt
Capacitors to 33-Bus Distribution Network 25
1.5.2 Optimum Placement of RDGs and Shunt Capacitors to 69-Bus Distribution
Network 29
1.6 Conclusions 33
References 34
2 Chaotic PSO for PV System Modelling 41
Souvik Ganguli, Jyoti Gupta and Parag Nijhawan
2.1 Introduction 42
2.2 Proposed Method 43
2.3 Results and Discussions 43
2.4 Conclusions 72
References 72
3 Application of Artificial Intelligence and Machine Learning Techniques in
Island Detection in a Smart Grid 79
Soham Dutta, Pradip Kumar Sadhu, Murthy Cherikuri and Dusmanta Kumar
Mohanta
3.1 Introduction 80
3.1.1 Distributed Generation Technology in Smart Grid 81
3.1.2 Microgrids 81
3.3.1.1 Problems with Microgrids 81
3.2 Islanding in Power System 82
3.3 Island Detection Methods 83
3.3.1 Passive Methods 83
3.3.2 Active Methods 85
3.3.3 Hybrid Methods 86
3.3.4 Local Methods 87
3.3.5 Signal Processing Methods 87
3.3.6 Classifer Methods 88
3.4 Application of Machine Learning and Artificial Intelligence Algorithms
in Island Detection Methods 89
3.4.1 Decision Tree 89
3.4.1.1 Advantages of Decision Tree 91
3.4.1.2 Disadvantages of Decision Tree 91
3.4.2 Artificial Neural Network 91
3.4.2.1 Advantages of Artificial Neural Network 93
3.4.2.2 Disadvantages of Artificial Neural Network 93
3.4.3 Fuzzy Logic 93
3.4.3.1 Advantages of Fuzzy Logic 94
3.4.3.2 Disadvantages of Fuzzy Logic 94
3.4.4 Artificial Neuro-Fuzzy Inference System 95
3.4.4.1 Advantages of Artificial Neuro-Fuzzy Inference System 95
3.4.4.2 Disadvantages of Artificial Neuro-Fuzzy Inference System 96
3.4.5 Static Vector Machine 96
3.4.5.1 Advantages of Support Vector Machine 97
3.4.5.2 Disadvantages of Support Vector Machine 97
3.4.6 Random Forest 97
3.4.6.1 Advantages of Random Forest 98
3.4.6.2 Disadvantages of Random Forest 98
3.4.7 Comparison of Machine Learning and Artificial Intelligence Based
Island Detection Methods with Other Methods 99
3.5 Conclusion 99
References 101
4 Intelligent Control Technique for Reduction of Converter Generated EMI in
DG Environment 111
Ritesh Tirole, R R Joshi, Vinod Kumar Yadav, Jai Kumar Maherchandani and
Shripati Vyas
4.1 Introduction 112
4.2 Grid Connected Solar PV System 113
4.2.1 Grid Connected Solar PV System 113
4.2.2 PhotoVoltaic Cell 114
4.2.3 PhotoVoltaic Array 114
4.2.4 PhotoVoltaic System Configurations 114
4.2.4.1 Centralized Configurations 115
4.2.4.2 Master Slave Configurations 115
4.2.4.3 String Configurations 115
4.2.4.4 Modular Configurations 115
4.2.5 Inverter Integration in Grid Solar PV System 115
4.2.5.1 Voltage Source Inverter 116
4.2.5.2 Current Source Inverter 117
4.3 Control Strategies for Grid Connected Solar PV System 117
4.3.1 Grid Solar PV System Controller 117
4.3.1.1 Linear Controllers 117
4.3.1.2 Non-Linear Controllers 117
4.3.1.3 Robust Controllers 118
4.3.1.4 Adaptive Controllers 118
4.3.1.5 Predictive Controllers 118
4.3.1.6 Intelligent Controllers 118
4.4 Electromagnetic Interference 118
4.4.1 Mechanisms of Electromagnetic Interference 119
4.4.2 Effect of Electromagnetic Interference 120
4.5 Intelligent Controller for Grid Connected Solar PV System 120
4.5.1 Fuzzy Logic Controller 120
4.6 Results and Discussion 121
4.6.1 Generated EMI at the Input Side of Grid SPV System 122
4.7 Conclusion 125
References 125
5 A Review of Algorithms for Control and Optimization for Energy Management
of Hybrid Renewable Energy Systems 131
Megha Vyas, Vinod Kumar Yadav, Shripati Vyas, R.R Joshi and Ritesh Tirole
5.1 Introduction 132
5.2 Optimization and Control of HRES 134
5.3 Optimization Techniques/Algorithms 135
5.3.1 Genetic Algorithms (GA) 136
5.4 Use of Ga In Solar Power Forecasting 140
5.5 PV Power Forecasting 142
5.5.1 Short-Term Forecasting 143
5.5.2 Medium Term Forecasting 144
5.5.3 Long Term Forecasting 144
5.6 Advantages 145
5.7 Disadvantages 146
5.8 Conclusion 146
Appendix A: List of Abbreviations 146
References 147
6 Integration of RES with MPPT by SVPWM Scheme 157
Busireddy Hemanth Kumar and Vivekanandan Subburaj
6.1 Introduction 158
6.2 Multilevel Inverter Topologies 158
6.2.1 Cascaded H-Bridge (CHB) Topology 159
6.2.1.1 Neutral Point Clamped (NPC) Topology 160
6.2.1.2 Flying Capacitor (FC) Topology 160
6.3 Multilevel Inverter Modulation Techniques 161
6.3.1 Fundamental Switching Frequency (FSF) 162
6.3.1.1 Selective Harmonic Elimination Technique for MLIs 162
6.3.1.2 Nearest Level Control Technique 163
6.3.1.3 Nearest Vector Control Technique 164
6.3.2 Mixed Switching Frequency PWM 164
6.3.3 High Level Frequency PWM 164
6.3.3.1 CBPWM Techniques for MLI 164
6.3.3.2 Pulse Width Modulation Algorithms Using Space Vector Techniques for
Multilevel Inverters 167
6.4 Grid Integration of Renewable Energy Sources (RES) 167
6.4.1 Solar PV Array 167
6.4.2 Maximum Power Point Tracking (MPPT) 169
6.4.3 Power Control Scheme 170
6.5 Simulation Results 171
6.6 Conclusion 176
References 176
7 Energy Management of Standalone Hybrid Wind-PV System 179
Raunak Jangid, Jai Kumar Maherchandani, Vinod Kumar and Raju Kumar Swami
7.1 Introduction 180
7.2 Hybrid Renewable Energy System Configuration & Modeling 180
7.3 PV System Modeling 181
7.4 Wind System Modeling 183
7.5 Modeling of Batteries 185
7.6 Energy Management Controller 186
7.7 Simulation Results and Discussion 186
7.7.1 Simulation Response at Impulse Change in Wind Speed, Successive
Increase in Irradiance Level and Impulse Change in Load 187
7.8 Conclusion 193
References 194
8 Optimization Technique Based Distribution Network Planning Incorporating
Intermittent Renewable Energy Sources 199
Surajit Sannigrahi and Parimal Acharjee
8.1 Introduction 200
8.2 Load and WTDG Modeling 204
8.2.1 Modeling of Load Demand 204
8.2.2 Modeling of WTDG 205
8.3 Objective Functions 207
8.3.1 System Voltage Enhancement Index (SVEI) 208
8.3.2 Economic Feasibility Index (EFI) 208
8.3.3 Emission Cost Reduction Index (ECRI) 211
8.4 Mathematical Formulation Based on Fuzzy Logic 212
8.4.1 Fuzzy MF for SVEI 212
8.4.2 Fuzzy MF for EFI 213
8.4.3 Fuzzy MF for ECRI 214
8.5 Solution Algorithm 215
8.5.1 Standard RTO Technique 215
8.5.2 Discrete RTO (DRTO) Algorithm 217
8.5.3 Computational Flow 219
8.6 Simulation Results and Analysis 221
8.6.1 Obtained Results for Different Planning Cases 223
8.6.2 Analysis of Voltage Profile and Power Flow Under the Worst Case
Scenarios: 230
8.6.3 Comparison Between Different Algorithms 231
8.6.3.1 Solution Quality 234
8.6.3.2 Computational Time 234
8.6.3.3 Failure Rate 234
8.6.3.4 Convergence Characteristics 234
8.6.3.5 Wilcoxon Signed Rank Test (WSRT) 236
8.7 Conclusion 237
References 239
9 User Interactive GUI for Integrated Design of PV Systems 243
SushmitaSarkar, K UmaRao, Prema V, Anirudh Sharma C A, Jayanth Bhargav and
ShrikeshSheshaprasad
9.1 Introduction 244
9.2 PV System Design 245
9.2.1 Design of a Stand-Alone PV System 245
9.2.1.1 Panel Size Calculations 246
9.2.1.2 Battery Sizing 247
9.2.1.3 Inverter Design 248
9.2.1.4 Loss of Load 249
9.2.1.5 Average Daily Units Generated 249
9.2.2 Design of a Grid-Tied PV System 250
9.2.3 Design of a Large-Scale Power Plant 251
9.3 Economic Considerations 252
9.4 PV System Standards 252
9.5 Design of GUI 252
9.6 Results 255
9.6.1 Design of a Stand-Alone System Using GUI 255
9.6.2 GUI for a Grid-Tied System 257
9.6.3 GUI for a Large PV Plant 259
9.7 Discussions 260
9.8 Conclusion and Future Scope 260
9.9 Acknowledgment 261
References 261
10 Situational Awareness of Micro-Grid Using Micro-PMU and Learning Vector
Quantization Algorithm 267
Kunjabihari Swain and Murthy Cherukuri
10.1 Introduction 268
10.2 Micro Grid 269
10.3 Phasor Measurement Unit and Micro PMU 270
10.4 Situational Awareness: Perception, Comprehension and Prediction 272
10.4.1 Perception 273
10.4.2 Comprehension 274
10.4.3 Projection 280
10.5 Conclusion 280
References 280
11 AI and ML for the Smart Grid 287
Dr M K Khedkar and B Ramesh
Abbreviations 288
11.1 Introduction 288
11.2 AI Techniques 291
11.2.1 Expert Systems (ES) 291
11.2.2 Artificial Neural Networks (ANN) 291
11.2.3 Fuzzy Logic (FL) 292
11.2.4 Genetic Algorithm (GA) 292
11.3 Machine Learning (ML) 293
11.4 Home Energy Management System (HEMS) 294
11.5 Load Forecasting (LF) in Smart Grid 295
11.6 Adaptive Protection (AP) 297
11.7 Energy Trading in Smart Grid 298
11.8 AI Based Smart Energy Meter (AI-SEM) 300
References 302
12 Energy Loss Allocation in Distribution Systems with Distributed
Generations 307
Dr Kushal Manohar Jagtap
12.1 Introduction 308
12.2 Load Modelling 311
12.3 Mathematicl Model 312
12.4 Solution Algorithm 317
12.5 Results and Discussion 317
12.6 Conclusion 341
References 341
13 Enhancement of Transient Response of Statcom and VSC Based HVDC with GA
and PSO Based Controllers 345
Nagesh Prabhu, R Thirumalaivasan and M.Janaki
13.1 Introduction 346
13.2 Design of Genetic Algorithm Based Controller for STATCOM 347
13.2.1 Two Level STACOM with Type-2 Controller 348
13.2.1.1 Simulation Results with Suboptimal Controller Parameters 349
13.2.1.2 PI Controller Without Nonlinear State Variable Feedback 349
13.2.1.3 PI Controller with Nonlinear State Variable Feedback 351
13.2.2 Structure of Type-1 Controller for 3-Level STACOM 354
13.2.2.1 Transient Simulation with Suboptimal Controller Parameters 357
13.2.3 Application of Genetic Algorithm for Optimization of Controller
Parameters 357
13.2.3.1 Boundaries of Type-2 Controller Parameters in GA Optimization 359
13.2.3.2 Boundaries of Type-1 Controller Parameters in GA Optimization 360
13.2.4 Optimization Results of Two Level STATCOM with GA Optimized
Controller Parameters 360
13.2.4.1 Transient Simulation with GA Optimized Controller Parameters 361
13.2.5 Optimization Results of Three Level STATCOM with Optimal Controller
Parameters 362
13.2.5.1 Transient Simulation with GA Optimized Controller Parameters 363
13.3 Design of Particle Swarm Optimization Based Controller for STATCOM 364
13.3.1 Optimization Results of Two Level STATCOM with GA and PSO Optimized
Parameters 365
13.4 Design of Genetic Algorithm Based Type-1 Controller for VSCHVDC 371
13.4.1 Modeling of VSC HVDC 371
13.4.1.1 Converter Controller 374
13.4.2 A Case Study 375
13.4.2.1 Transient Simulation with Suboptimal Controller Parameters 376
13.4.3 Design of Controller Using GA and Simulation Results 378
13.4.3.1 Description of Optimization Problem and Application of GA 378
13.4.3.2 Transient Simulation 379
13.4.3.3 Eigenvalue Analysis 379
13.5 Conclusion 379
References 386
14 Short Term Load Forecasting for CPP Using ANN 391
Kirti Pal and Vidhi Tiwari
14.1 Introduction 392
14.1.1 Captive Power Plant 394
14.1.2 Gas Turbine 394
14.2 Working of Combined Cycle Power Plant 395
14.3 Implementation of ANN for Captive Power Plant 396
14.4 Training and Testing Results 397
14.4.1 Regression Plot 397
14.4.2 The Performance Plot 398
14.4.3 Error Histogram 399
14.4.4 Training State Plot 399
14.4.5 Comparison between the Predicted Load and Actual Load 401
14.5 Conclusion 403
14.6 Acknowlegdement 403
References 404
15 Real-Time EVCS Scheduling Scheme by Using GA 409
Tripti Kunj and Kirti Pal
15.1 Introduction 410
15.2 EV Charging Station Modeling 413
15.2.1 Parts of the System 413
15.2.2 Proposed EV Charging Station 414
15.2.3 Proposed Charging Scheme Cycle 414
15.3 Real Time System Modeling for EVCS 415
15.3.1 Scenario 1 415
15.3.2 Design of Scenario 1 418
15.3.3 Scenario 2 419
15.3.4 Design of Scenario 2 421
15.3.5 Simulation Settings 422
15.4 Results and Discussion 424
15.4.1 Influence on Average Waiting Time 424
15.4.1.1 Early Morning 425
15.4.1.2 Forenoon 425
15.4.1.3 Afternoon 426
15.4.2 Influence on Number of Charged EV 426
15.5 Conclusion 428
References 428
About the Editors 435
Index 437
1 Optimization Algorithm for Renewable Energy Integration 1
Bikash Das, SoumyabrataBarik, Debapriya Das and V Mukherjee
1.1 Introduction 2
1.2 Mixed Discrete SPBO 5
1.2.1 SPBO Algorithm 5
1.2.2 Performance of SPBO for Solving Benchmark Functions 8
1.2.3 Mixed Discrete SPBO 11
1.3 Problem Formulation 12
1.3.1 Objective Functions 12
1.3.2 Technical Constraints Considered 14
1.4 Comparison of the SPBO Algorithm in Terms of CEC-2005 Benchmark
Functions 17
1.5 Optimum Placement of RDG and Shunt Capacitor to the Distribution
Network 18
1.5.1 Optimum Placement of RDGs and Shunt
Capacitors to 33-Bus Distribution Network 25
1.5.2 Optimum Placement of RDGs and Shunt Capacitors to 69-Bus Distribution
Network 29
1.6 Conclusions 33
References 34
2 Chaotic PSO for PV System Modelling 41
Souvik Ganguli, Jyoti Gupta and Parag Nijhawan
2.1 Introduction 42
2.2 Proposed Method 43
2.3 Results and Discussions 43
2.4 Conclusions 72
References 72
3 Application of Artificial Intelligence and Machine Learning Techniques in
Island Detection in a Smart Grid 79
Soham Dutta, Pradip Kumar Sadhu, Murthy Cherikuri and Dusmanta Kumar
Mohanta
3.1 Introduction 80
3.1.1 Distributed Generation Technology in Smart Grid 81
3.1.2 Microgrids 81
3.3.1.1 Problems with Microgrids 81
3.2 Islanding in Power System 82
3.3 Island Detection Methods 83
3.3.1 Passive Methods 83
3.3.2 Active Methods 85
3.3.3 Hybrid Methods 86
3.3.4 Local Methods 87
3.3.5 Signal Processing Methods 87
3.3.6 Classifer Methods 88
3.4 Application of Machine Learning and Artificial Intelligence Algorithms
in Island Detection Methods 89
3.4.1 Decision Tree 89
3.4.1.1 Advantages of Decision Tree 91
3.4.1.2 Disadvantages of Decision Tree 91
3.4.2 Artificial Neural Network 91
3.4.2.1 Advantages of Artificial Neural Network 93
3.4.2.2 Disadvantages of Artificial Neural Network 93
3.4.3 Fuzzy Logic 93
3.4.3.1 Advantages of Fuzzy Logic 94
3.4.3.2 Disadvantages of Fuzzy Logic 94
3.4.4 Artificial Neuro-Fuzzy Inference System 95
3.4.4.1 Advantages of Artificial Neuro-Fuzzy Inference System 95
3.4.4.2 Disadvantages of Artificial Neuro-Fuzzy Inference System 96
3.4.5 Static Vector Machine 96
3.4.5.1 Advantages of Support Vector Machine 97
3.4.5.2 Disadvantages of Support Vector Machine 97
3.4.6 Random Forest 97
3.4.6.1 Advantages of Random Forest 98
3.4.6.2 Disadvantages of Random Forest 98
3.4.7 Comparison of Machine Learning and Artificial Intelligence Based
Island Detection Methods with Other Methods 99
3.5 Conclusion 99
References 101
4 Intelligent Control Technique for Reduction of Converter Generated EMI in
DG Environment 111
Ritesh Tirole, R R Joshi, Vinod Kumar Yadav, Jai Kumar Maherchandani and
Shripati Vyas
4.1 Introduction 112
4.2 Grid Connected Solar PV System 113
4.2.1 Grid Connected Solar PV System 113
4.2.2 PhotoVoltaic Cell 114
4.2.3 PhotoVoltaic Array 114
4.2.4 PhotoVoltaic System Configurations 114
4.2.4.1 Centralized Configurations 115
4.2.4.2 Master Slave Configurations 115
4.2.4.3 String Configurations 115
4.2.4.4 Modular Configurations 115
4.2.5 Inverter Integration in Grid Solar PV System 115
4.2.5.1 Voltage Source Inverter 116
4.2.5.2 Current Source Inverter 117
4.3 Control Strategies for Grid Connected Solar PV System 117
4.3.1 Grid Solar PV System Controller 117
4.3.1.1 Linear Controllers 117
4.3.1.2 Non-Linear Controllers 117
4.3.1.3 Robust Controllers 118
4.3.1.4 Adaptive Controllers 118
4.3.1.5 Predictive Controllers 118
4.3.1.6 Intelligent Controllers 118
4.4 Electromagnetic Interference 118
4.4.1 Mechanisms of Electromagnetic Interference 119
4.4.2 Effect of Electromagnetic Interference 120
4.5 Intelligent Controller for Grid Connected Solar PV System 120
4.5.1 Fuzzy Logic Controller 120
4.6 Results and Discussion 121
4.6.1 Generated EMI at the Input Side of Grid SPV System 122
4.7 Conclusion 125
References 125
5 A Review of Algorithms for Control and Optimization for Energy Management
of Hybrid Renewable Energy Systems 131
Megha Vyas, Vinod Kumar Yadav, Shripati Vyas, R.R Joshi and Ritesh Tirole
5.1 Introduction 132
5.2 Optimization and Control of HRES 134
5.3 Optimization Techniques/Algorithms 135
5.3.1 Genetic Algorithms (GA) 136
5.4 Use of Ga In Solar Power Forecasting 140
5.5 PV Power Forecasting 142
5.5.1 Short-Term Forecasting 143
5.5.2 Medium Term Forecasting 144
5.5.3 Long Term Forecasting 144
5.6 Advantages 145
5.7 Disadvantages 146
5.8 Conclusion 146
Appendix A: List of Abbreviations 146
References 147
6 Integration of RES with MPPT by SVPWM Scheme 157
Busireddy Hemanth Kumar and Vivekanandan Subburaj
6.1 Introduction 158
6.2 Multilevel Inverter Topologies 158
6.2.1 Cascaded H-Bridge (CHB) Topology 159
6.2.1.1 Neutral Point Clamped (NPC) Topology 160
6.2.1.2 Flying Capacitor (FC) Topology 160
6.3 Multilevel Inverter Modulation Techniques 161
6.3.1 Fundamental Switching Frequency (FSF) 162
6.3.1.1 Selective Harmonic Elimination Technique for MLIs 162
6.3.1.2 Nearest Level Control Technique 163
6.3.1.3 Nearest Vector Control Technique 164
6.3.2 Mixed Switching Frequency PWM 164
6.3.3 High Level Frequency PWM 164
6.3.3.1 CBPWM Techniques for MLI 164
6.3.3.2 Pulse Width Modulation Algorithms Using Space Vector Techniques for
Multilevel Inverters 167
6.4 Grid Integration of Renewable Energy Sources (RES) 167
6.4.1 Solar PV Array 167
6.4.2 Maximum Power Point Tracking (MPPT) 169
6.4.3 Power Control Scheme 170
6.5 Simulation Results 171
6.6 Conclusion 176
References 176
7 Energy Management of Standalone Hybrid Wind-PV System 179
Raunak Jangid, Jai Kumar Maherchandani, Vinod Kumar and Raju Kumar Swami
7.1 Introduction 180
7.2 Hybrid Renewable Energy System Configuration & Modeling 180
7.3 PV System Modeling 181
7.4 Wind System Modeling 183
7.5 Modeling of Batteries 185
7.6 Energy Management Controller 186
7.7 Simulation Results and Discussion 186
7.7.1 Simulation Response at Impulse Change in Wind Speed, Successive
Increase in Irradiance Level and Impulse Change in Load 187
7.8 Conclusion 193
References 194
8 Optimization Technique Based Distribution Network Planning Incorporating
Intermittent Renewable Energy Sources 199
Surajit Sannigrahi and Parimal Acharjee
8.1 Introduction 200
8.2 Load and WTDG Modeling 204
8.2.1 Modeling of Load Demand 204
8.2.2 Modeling of WTDG 205
8.3 Objective Functions 207
8.3.1 System Voltage Enhancement Index (SVEI) 208
8.3.2 Economic Feasibility Index (EFI) 208
8.3.3 Emission Cost Reduction Index (ECRI) 211
8.4 Mathematical Formulation Based on Fuzzy Logic 212
8.4.1 Fuzzy MF for SVEI 212
8.4.2 Fuzzy MF for EFI 213
8.4.3 Fuzzy MF for ECRI 214
8.5 Solution Algorithm 215
8.5.1 Standard RTO Technique 215
8.5.2 Discrete RTO (DRTO) Algorithm 217
8.5.3 Computational Flow 219
8.6 Simulation Results and Analysis 221
8.6.1 Obtained Results for Different Planning Cases 223
8.6.2 Analysis of Voltage Profile and Power Flow Under the Worst Case
Scenarios: 230
8.6.3 Comparison Between Different Algorithms 231
8.6.3.1 Solution Quality 234
8.6.3.2 Computational Time 234
8.6.3.3 Failure Rate 234
8.6.3.4 Convergence Characteristics 234
8.6.3.5 Wilcoxon Signed Rank Test (WSRT) 236
8.7 Conclusion 237
References 239
9 User Interactive GUI for Integrated Design of PV Systems 243
SushmitaSarkar, K UmaRao, Prema V, Anirudh Sharma C A, Jayanth Bhargav and
ShrikeshSheshaprasad
9.1 Introduction 244
9.2 PV System Design 245
9.2.1 Design of a Stand-Alone PV System 245
9.2.1.1 Panel Size Calculations 246
9.2.1.2 Battery Sizing 247
9.2.1.3 Inverter Design 248
9.2.1.4 Loss of Load 249
9.2.1.5 Average Daily Units Generated 249
9.2.2 Design of a Grid-Tied PV System 250
9.2.3 Design of a Large-Scale Power Plant 251
9.3 Economic Considerations 252
9.4 PV System Standards 252
9.5 Design of GUI 252
9.6 Results 255
9.6.1 Design of a Stand-Alone System Using GUI 255
9.6.2 GUI for a Grid-Tied System 257
9.6.3 GUI for a Large PV Plant 259
9.7 Discussions 260
9.8 Conclusion and Future Scope 260
9.9 Acknowledgment 261
References 261
10 Situational Awareness of Micro-Grid Using Micro-PMU and Learning Vector
Quantization Algorithm 267
Kunjabihari Swain and Murthy Cherukuri
10.1 Introduction 268
10.2 Micro Grid 269
10.3 Phasor Measurement Unit and Micro PMU 270
10.4 Situational Awareness: Perception, Comprehension and Prediction 272
10.4.1 Perception 273
10.4.2 Comprehension 274
10.4.3 Projection 280
10.5 Conclusion 280
References 280
11 AI and ML for the Smart Grid 287
Dr M K Khedkar and B Ramesh
Abbreviations 288
11.1 Introduction 288
11.2 AI Techniques 291
11.2.1 Expert Systems (ES) 291
11.2.2 Artificial Neural Networks (ANN) 291
11.2.3 Fuzzy Logic (FL) 292
11.2.4 Genetic Algorithm (GA) 292
11.3 Machine Learning (ML) 293
11.4 Home Energy Management System (HEMS) 294
11.5 Load Forecasting (LF) in Smart Grid 295
11.6 Adaptive Protection (AP) 297
11.7 Energy Trading in Smart Grid 298
11.8 AI Based Smart Energy Meter (AI-SEM) 300
References 302
12 Energy Loss Allocation in Distribution Systems with Distributed
Generations 307
Dr Kushal Manohar Jagtap
12.1 Introduction 308
12.2 Load Modelling 311
12.3 Mathematicl Model 312
12.4 Solution Algorithm 317
12.5 Results and Discussion 317
12.6 Conclusion 341
References 341
13 Enhancement of Transient Response of Statcom and VSC Based HVDC with GA
and PSO Based Controllers 345
Nagesh Prabhu, R Thirumalaivasan and M.Janaki
13.1 Introduction 346
13.2 Design of Genetic Algorithm Based Controller for STATCOM 347
13.2.1 Two Level STACOM with Type-2 Controller 348
13.2.1.1 Simulation Results with Suboptimal Controller Parameters 349
13.2.1.2 PI Controller Without Nonlinear State Variable Feedback 349
13.2.1.3 PI Controller with Nonlinear State Variable Feedback 351
13.2.2 Structure of Type-1 Controller for 3-Level STACOM 354
13.2.2.1 Transient Simulation with Suboptimal Controller Parameters 357
13.2.3 Application of Genetic Algorithm for Optimization of Controller
Parameters 357
13.2.3.1 Boundaries of Type-2 Controller Parameters in GA Optimization 359
13.2.3.2 Boundaries of Type-1 Controller Parameters in GA Optimization 360
13.2.4 Optimization Results of Two Level STATCOM with GA Optimized
Controller Parameters 360
13.2.4.1 Transient Simulation with GA Optimized Controller Parameters 361
13.2.5 Optimization Results of Three Level STATCOM with Optimal Controller
Parameters 362
13.2.5.1 Transient Simulation with GA Optimized Controller Parameters 363
13.3 Design of Particle Swarm Optimization Based Controller for STATCOM 364
13.3.1 Optimization Results of Two Level STATCOM with GA and PSO Optimized
Parameters 365
13.4 Design of Genetic Algorithm Based Type-1 Controller for VSCHVDC 371
13.4.1 Modeling of VSC HVDC 371
13.4.1.1 Converter Controller 374
13.4.2 A Case Study 375
13.4.2.1 Transient Simulation with Suboptimal Controller Parameters 376
13.4.3 Design of Controller Using GA and Simulation Results 378
13.4.3.1 Description of Optimization Problem and Application of GA 378
13.4.3.2 Transient Simulation 379
13.4.3.3 Eigenvalue Analysis 379
13.5 Conclusion 379
References 386
14 Short Term Load Forecasting for CPP Using ANN 391
Kirti Pal and Vidhi Tiwari
14.1 Introduction 392
14.1.1 Captive Power Plant 394
14.1.2 Gas Turbine 394
14.2 Working of Combined Cycle Power Plant 395
14.3 Implementation of ANN for Captive Power Plant 396
14.4 Training and Testing Results 397
14.4.1 Regression Plot 397
14.4.2 The Performance Plot 398
14.4.3 Error Histogram 399
14.4.4 Training State Plot 399
14.4.5 Comparison between the Predicted Load and Actual Load 401
14.5 Conclusion 403
14.6 Acknowlegdement 403
References 404
15 Real-Time EVCS Scheduling Scheme by Using GA 409
Tripti Kunj and Kirti Pal
15.1 Introduction 410
15.2 EV Charging Station Modeling 413
15.2.1 Parts of the System 413
15.2.2 Proposed EV Charging Station 414
15.2.3 Proposed Charging Scheme Cycle 414
15.3 Real Time System Modeling for EVCS 415
15.3.1 Scenario 1 415
15.3.2 Design of Scenario 1 418
15.3.3 Scenario 2 419
15.3.4 Design of Scenario 2 421
15.3.5 Simulation Settings 422
15.4 Results and Discussion 424
15.4.1 Influence on Average Waiting Time 424
15.4.1.1 Early Morning 425
15.4.1.2 Forenoon 425
15.4.1.3 Afternoon 426
15.4.2 Influence on Number of Charged EV 426
15.5 Conclusion 428
References 428
About the Editors 435
Index 437