Timothy Bower
Introduction to Computational Engineering with MATLAB® (eBook, ePUB)
62,95 €
62,95 €
inkl. MwSt.
Sofort per Download lieferbar
31 °P sammeln
62,95 €
Als Download kaufen
62,95 €
inkl. MwSt.
Sofort per Download lieferbar
31 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
62,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
31 °P sammeln
Timothy Bower
Introduction to Computational Engineering with MATLAB® (eBook, ePUB)
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This book teaches readers how to use MATLAB programming to solve numerical engineering problems. The book focuses on computational engineering with the objective of helping engineering students improve their numerical problem-solving skills.
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
- Größe: 19.69MB
This book teaches readers how to use MATLAB programming to solve numerical engineering problems. The book focuses on computational engineering with the objective of helping engineering students improve their numerical problem-solving skills.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 438
- Erscheinungstermin: 28. September 2022
- Englisch
- ISBN-13: 9781000713138
- Artikelnr.: 65002885
- Verlag: Taylor & Francis
- Seitenzahl: 438
- Erscheinungstermin: 28. September 2022
- Englisch
- ISBN-13: 9781000713138
- Artikelnr.: 65002885
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Tim Bower is an Associate Professor of Robotics and Automation Engineering Technology and Computer Systems Technology at Kansas State University Salina. He received the B.S. Electrical Engineering degree from Kansas State University (K-State) in 1987 and the M.S. Electrical Engineering degree from the University of Kansas in 1990. He was a Senior Member of the Technical Staff at Sprint's Local Telephone Division from 1989 to 1998. From 1998 to 2003, he was a systems administration manager and instructor at Kansas State University in Manhattan Kansas while taking graduate course work in Computer Science. He joined the faculty of K-State's campus in Salina Kansas in 2004. He teaches undergraduate courses related to programming in C, Python, and MATLAB, robotics programming, machine vision, numerical computation, operating systems, data structures and algorithms, and systems administration.
Away from teaching, he enjoys spending time with his wife, three grown children, and five grandchildren.
Away from teaching, he enjoys spending time with his wife, three grown children, and five grandchildren.
1. MATLAB Programming. 1.1. The MATLAB Development Environment. 1.2.
Variables and Values. 1.3. MATLAB Scripts. 1.4. Input and Output. 1.5. For
Loops. 1.6. Control Constructs. 1.7. Vectors and Matrices in MATLAB. 1.8.
MATLAB Functions. 1.9. Functions Operating on Vectors. 1.10. Importing Data
Into MATLAB. 1.11. Text Strings in MATLAB. 1.12. Exercises. 2. Graphical
Data Analysis. 2.1. Using the Plot Tool. 2.2. Basic Line Plots. 2.3. 3-D
Plots. 2.4. Exercises. 3. Statistical Data Analysis. 3.1. Introduction to
Statistics. 3.2. Common Statistical Functions. 3.3. Moving Window
Statistics. 3.4. Probability Distributions. 3.5. Generating Random Numbers.
3.6. Statistics on Matrices. 3.7. Plots of Statistical Data. 3.8. Central
Limit Theorem. 3.9. Sampling and Confidence Intervals. 3.10. Statistical
Significance. 3.11. Exercises. 4. Using the Symbolic Math Toolbox. 4.1.
Throwing a Ball Up. 4.2. Symbolic Algebra. 4.3. Symbolic Calculus. 4.4.
Symbolic Differential Equations. 4.5. Exercises. 5. Introduction to Linear
Algebra. 5.1. Working with Vectors. 5.2. Working with Matrices. 5.3.
Geometric Transforms. 5.4. Systems of Linear Equations. 5.5. Elimination.
5.6. LU Decomposition. 5.7. Linear System Applications. 5.8.
Under-determined Systems. 5.9. Over-determined Systems and Vector
Projections. 5.10. Least Squares Regression. 5.11. Left-Divide Operator.
5.12. Exercises. 6. Application of Eigenvalues and Eigenvectors. 6.1.
Introduction to Eigenvalues and Eigenvectors. 6.2. Eigenvector Animation.
6.3. Finding Eigenvalues and Eigenvectors. 6.4. Properties of Eigenvalues
and Eigenvectors. 6.5. Diagonalization and Powers of A. 6.6. Change of
Basis and Difference Equations. 6.7. Systems of Linear ODEs. 6.8. Singular
Value Decomposition (SVD). 6.9. Principal Component Analysis (PCA). 6.10.
Eigenvector Animation Code. 6.11. Exercises. 7. Computational Numerical
Methods. 7.1. Optimization. 7.2. Data Interpolation. 7.3. Numerical
Differentiation. 7.4. Numerical Integration. 7.5. Numerical Differential
Equations. 7.6. Exercises. A. Linear Algebra Appendix. B. The Number e.
Bibliography. Index.
Variables and Values. 1.3. MATLAB Scripts. 1.4. Input and Output. 1.5. For
Loops. 1.6. Control Constructs. 1.7. Vectors and Matrices in MATLAB. 1.8.
MATLAB Functions. 1.9. Functions Operating on Vectors. 1.10. Importing Data
Into MATLAB. 1.11. Text Strings in MATLAB. 1.12. Exercises. 2. Graphical
Data Analysis. 2.1. Using the Plot Tool. 2.2. Basic Line Plots. 2.3. 3-D
Plots. 2.4. Exercises. 3. Statistical Data Analysis. 3.1. Introduction to
Statistics. 3.2. Common Statistical Functions. 3.3. Moving Window
Statistics. 3.4. Probability Distributions. 3.5. Generating Random Numbers.
3.6. Statistics on Matrices. 3.7. Plots of Statistical Data. 3.8. Central
Limit Theorem. 3.9. Sampling and Confidence Intervals. 3.10. Statistical
Significance. 3.11. Exercises. 4. Using the Symbolic Math Toolbox. 4.1.
Throwing a Ball Up. 4.2. Symbolic Algebra. 4.3. Symbolic Calculus. 4.4.
Symbolic Differential Equations. 4.5. Exercises. 5. Introduction to Linear
Algebra. 5.1. Working with Vectors. 5.2. Working with Matrices. 5.3.
Geometric Transforms. 5.4. Systems of Linear Equations. 5.5. Elimination.
5.6. LU Decomposition. 5.7. Linear System Applications. 5.8.
Under-determined Systems. 5.9. Over-determined Systems and Vector
Projections. 5.10. Least Squares Regression. 5.11. Left-Divide Operator.
5.12. Exercises. 6. Application of Eigenvalues and Eigenvectors. 6.1.
Introduction to Eigenvalues and Eigenvectors. 6.2. Eigenvector Animation.
6.3. Finding Eigenvalues and Eigenvectors. 6.4. Properties of Eigenvalues
and Eigenvectors. 6.5. Diagonalization and Powers of A. 6.6. Change of
Basis and Difference Equations. 6.7. Systems of Linear ODEs. 6.8. Singular
Value Decomposition (SVD). 6.9. Principal Component Analysis (PCA). 6.10.
Eigenvector Animation Code. 6.11. Exercises. 7. Computational Numerical
Methods. 7.1. Optimization. 7.2. Data Interpolation. 7.3. Numerical
Differentiation. 7.4. Numerical Integration. 7.5. Numerical Differential
Equations. 7.6. Exercises. A. Linear Algebra Appendix. B. The Number e.
Bibliography. Index.
1. MATLAB Programming. 1.1. The MATLAB Development Environment. 1.2.
Variables and Values. 1.3. MATLAB Scripts. 1.4. Input and Output. 1.5. For
Loops. 1.6. Control Constructs. 1.7. Vectors and Matrices in MATLAB. 1.8.
MATLAB Functions. 1.9. Functions Operating on Vectors. 1.10. Importing Data
Into MATLAB. 1.11. Text Strings in MATLAB. 1.12. Exercises. 2. Graphical
Data Analysis. 2.1. Using the Plot Tool. 2.2. Basic Line Plots. 2.3. 3-D
Plots. 2.4. Exercises. 3. Statistical Data Analysis. 3.1. Introduction to
Statistics. 3.2. Common Statistical Functions. 3.3. Moving Window
Statistics. 3.4. Probability Distributions. 3.5. Generating Random Numbers.
3.6. Statistics on Matrices. 3.7. Plots of Statistical Data. 3.8. Central
Limit Theorem. 3.9. Sampling and Confidence Intervals. 3.10. Statistical
Significance. 3.11. Exercises. 4. Using the Symbolic Math Toolbox. 4.1.
Throwing a Ball Up. 4.2. Symbolic Algebra. 4.3. Symbolic Calculus. 4.4.
Symbolic Differential Equations. 4.5. Exercises. 5. Introduction to Linear
Algebra. 5.1. Working with Vectors. 5.2. Working with Matrices. 5.3.
Geometric Transforms. 5.4. Systems of Linear Equations. 5.5. Elimination.
5.6. LU Decomposition. 5.7. Linear System Applications. 5.8.
Under-determined Systems. 5.9. Over-determined Systems and Vector
Projections. 5.10. Least Squares Regression. 5.11. Left-Divide Operator.
5.12. Exercises. 6. Application of Eigenvalues and Eigenvectors. 6.1.
Introduction to Eigenvalues and Eigenvectors. 6.2. Eigenvector Animation.
6.3. Finding Eigenvalues and Eigenvectors. 6.4. Properties of Eigenvalues
and Eigenvectors. 6.5. Diagonalization and Powers of A. 6.6. Change of
Basis and Difference Equations. 6.7. Systems of Linear ODEs. 6.8. Singular
Value Decomposition (SVD). 6.9. Principal Component Analysis (PCA). 6.10.
Eigenvector Animation Code. 6.11. Exercises. 7. Computational Numerical
Methods. 7.1. Optimization. 7.2. Data Interpolation. 7.3. Numerical
Differentiation. 7.4. Numerical Integration. 7.5. Numerical Differential
Equations. 7.6. Exercises. A. Linear Algebra Appendix. B. The Number e.
Bibliography. Index.
Variables and Values. 1.3. MATLAB Scripts. 1.4. Input and Output. 1.5. For
Loops. 1.6. Control Constructs. 1.7. Vectors and Matrices in MATLAB. 1.8.
MATLAB Functions. 1.9. Functions Operating on Vectors. 1.10. Importing Data
Into MATLAB. 1.11. Text Strings in MATLAB. 1.12. Exercises. 2. Graphical
Data Analysis. 2.1. Using the Plot Tool. 2.2. Basic Line Plots. 2.3. 3-D
Plots. 2.4. Exercises. 3. Statistical Data Analysis. 3.1. Introduction to
Statistics. 3.2. Common Statistical Functions. 3.3. Moving Window
Statistics. 3.4. Probability Distributions. 3.5. Generating Random Numbers.
3.6. Statistics on Matrices. 3.7. Plots of Statistical Data. 3.8. Central
Limit Theorem. 3.9. Sampling and Confidence Intervals. 3.10. Statistical
Significance. 3.11. Exercises. 4. Using the Symbolic Math Toolbox. 4.1.
Throwing a Ball Up. 4.2. Symbolic Algebra. 4.3. Symbolic Calculus. 4.4.
Symbolic Differential Equations. 4.5. Exercises. 5. Introduction to Linear
Algebra. 5.1. Working with Vectors. 5.2. Working with Matrices. 5.3.
Geometric Transforms. 5.4. Systems of Linear Equations. 5.5. Elimination.
5.6. LU Decomposition. 5.7. Linear System Applications. 5.8.
Under-determined Systems. 5.9. Over-determined Systems and Vector
Projections. 5.10. Least Squares Regression. 5.11. Left-Divide Operator.
5.12. Exercises. 6. Application of Eigenvalues and Eigenvectors. 6.1.
Introduction to Eigenvalues and Eigenvectors. 6.2. Eigenvector Animation.
6.3. Finding Eigenvalues and Eigenvectors. 6.4. Properties of Eigenvalues
and Eigenvectors. 6.5. Diagonalization and Powers of A. 6.6. Change of
Basis and Difference Equations. 6.7. Systems of Linear ODEs. 6.8. Singular
Value Decomposition (SVD). 6.9. Principal Component Analysis (PCA). 6.10.
Eigenvector Animation Code. 6.11. Exercises. 7. Computational Numerical
Methods. 7.1. Optimization. 7.2. Data Interpolation. 7.3. Numerical
Differentiation. 7.4. Numerical Integration. 7.5. Numerical Differential
Equations. 7.6. Exercises. A. Linear Algebra Appendix. B. The Number e.
Bibliography. Index.