Franck Laloe
Introduction to Continuous Symmetries (eBook, PDF)
From Space-Time to Quantum Mechanics
Übersetzer: Ostrowsky, Nicole; Ostrowsky, Daniel
88,99 €
88,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
88,99 €
Als Download kaufen
88,99 €
inkl. MwSt.
Sofort per Download lieferbar
0 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
88,99 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
0 °P sammeln
Franck Laloe
Introduction to Continuous Symmetries (eBook, PDF)
From Space-Time to Quantum Mechanics
Übersetzer: Ostrowsky, Nicole; Ostrowsky, Daniel
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
In dem neuen Werk von Franck Laloe wird ein symmetriebasierter Ansatz zum grundlegenden Verständnis der Quantenmechanik vorgestellt ? zusammen mit den entsprechenden Rechentechniken, die Studierende höherer Semester in den Bereichen Nuklearphysik, Quantenopik und Festkörperphysik benötigen.
- Geräte: PC
- mit Kopierschutz
- eBook Hilfe
- Größe: 9.24MB
Andere Kunden interessierten sich auch für
- Franck LaloeIntroduction to Continuous Symmetries (eBook, ePUB)88,99 €
- Yury M. BelousovProblem Solving in Theoretical Physics (eBook, PDF)93,99 €
- Franck LaloëGrundlagen kontinuierlicher Symmetrien (eBook, PDF)57,99 €
- John David JacksonJohn D. Jackson (eBook, PDF)76,99 €
- H. John PainIntroduction to Vibrations and Waves (eBook, PDF)39,99 €
- Mark Julian EverittQuantum Mechanics (eBook, PDF)61,99 €
- Yury M. BelousovProblem Solving in Theoretical Physics (eBook, ePUB)93,99 €
-
-
-
In dem neuen Werk von Franck Laloe wird ein symmetriebasierter Ansatz zum grundlegenden Verständnis der Quantenmechanik vorgestellt ? zusammen mit den entsprechenden Rechentechniken, die Studierende höherer Semester in den Bereichen Nuklearphysik, Quantenopik und Festkörperphysik benötigen.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley-VCH
- Seitenzahl: 576
- Erscheinungstermin: 29. Juni 2023
- Englisch
- ISBN-13: 9783527840540
- Artikelnr.: 68385478
- Verlag: Wiley-VCH
- Seitenzahl: 576
- Erscheinungstermin: 29. Juni 2023
- Englisch
- ISBN-13: 9783527840540
- Artikelnr.: 68385478
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Franck Laloë is a researcher at the Kastler-Brossel laboratory of the Ecole Normale Supérieure in Paris. His first assignment was with the University of Paris VI before he was appointed to the CNRS, the French National Research Center. His research is focused on optical pumping, statistical mechanics of quantum gases, musical acoustics and the foundations of quantum mechanics.
I Symmetry Transformations
A Fundamental Symmetries
B Symmetries in Classical Mechanics C Symmetries in Quantum Mechanics
A_I Euler's and Lagrange's Views in Classical Mechanics
1 Euler's Point of View
2 Lagrange's Point of View
II Notions on Group Theory
A General Properties of Groups
B Linear Representations of a Group
A_II Residual Classes of a Subgroup; Quotient Group
1 Residual Classes on the Left
2 Quotient Group
III Introduction to Continuous Groups and Lie Groups
A General Properties B Examples
C Galileo and Poincaré Groups
A_III Adjoint Representation, Killing Form, Casimir Operator
1 Representation Adjoint to the Lie Algebra
2 Killing Form; Scalar Product and Change of Basis in L
3 Totally Antisymmetric Structure Constants
4 Casimir Operator
IV Representations Induced in the State Space
A Conditions Imposed on Transformations in the State Space
B Wigner's Theorem
C Transformations of Observables
D Linear Representations in the State Space
E Phase Factors and Projective Representations
A_IV Finite-Dimensional Unitary Projective Representations of Related Lie Groups
1 Case Where G is Simply Connected
2 Case Where G is P-Connected
B_IV Uhlhorn-Wigner Theorem
1 Real Space
2 Complex Space
V Representations of the Galileo and Poincaré Groups: Mass, Spin and Energy
A Galileo Group
B Poincaré Group
A_V Some Properties of the Operators S and W_2
1 Operator S
2 Eigenvalues of the Operator W_2
B_V Geometric Displacement Group
1 Reminders: Classical Properties of Displacements
2 Associated Operators in the State Space
C_V Clean Lorentz Group
1 Link with the Group SL(2,C)
2 Small Group Associated with a Four-Vector
3 Operator W_2
D_V Space Reflections (Parity)
1 Action in Real Space
2 Associated Operator in the State Space
3 Retention of Parity
VI Construction of State Spaces and Wave Equations
A Galileo Group, Schrödinger Equation
B Poincaré Group, Klein-Gordon and Dirac Equations
A_VI Lagrangians of Wave Equations
1 Lagrangian of a Field
2 Schrödinger's Equation
3 Klein-Gordon Equation
4 Dirac's Equation
VII Irreducible Representations of the Group of Rotations, Spinors
A Irreducible Unitary Representations of the Group of Rotations
B Spin 1/2 Particles; Spinors
C Composition of the Kinetic Moments
A_VII Homorphism Between SU(2) and Rotation Matrices
1 Transformation of a Vector P Induced by an SU(2) Matrix
2 The Transformation is a Rotation
3 Homomorphism
4 Link to the Reasoning of Chapter VII
5 Link with Bivalent Representations
VIII Transformation of Observables by Rotation
A Vector Operators B Tensor Operators
C Wigner-Eckart Theorem
D Decomposition of the Density Matrix on Tensor Operators
A_VIII Basic Reminders on Classical Tensors
1 Vectors
2 Tensors
3 Properties
4 Tensoriality Criterion
5 Symmetric and Antisymmetric Tensors
6 Special Tensors
7 Irreducible Tensors
B_VIII Second Order Tensor Operators
1 Tensor Product of Two Vector Operators
2 Cartesian Components of the Tensor in the General Case
C_VIII Multipolar Moments
1 Electrical Multipole Moments
2 Magnetic Multipole Moments
3 Multipole Moments of a Quantum System for a Given Kinetic Moment Multiplicity J
IX Groups SU(2) and SU(3)
A System of Discernible but Equivalent Particles
B SU(2) Group and Isospin Symmetry
C Symmetry SU(3)
A_IX the Nature of a Particle Is Equivalent to an Internal Quantum Number
1 Partial or Total Antisymmetrization of a State Vector
2 Correspondence Between the States of Two Physical Systems
3 Physical Consequences
B_IX Operators Changing the Symmetry of a State Vector by Permutation
1 Fermions
2 Bosons
X Symmetry Breaking
A Magnetism, Breaking of the Rotation
A Fundamental Symmetries
B Symmetries in Classical Mechanics C Symmetries in Quantum Mechanics
A_I Euler's and Lagrange's Views in Classical Mechanics
1 Euler's Point of View
2 Lagrange's Point of View
II Notions on Group Theory
A General Properties of Groups
B Linear Representations of a Group
A_II Residual Classes of a Subgroup; Quotient Group
1 Residual Classes on the Left
2 Quotient Group
III Introduction to Continuous Groups and Lie Groups
A General Properties B Examples
C Galileo and Poincaré Groups
A_III Adjoint Representation, Killing Form, Casimir Operator
1 Representation Adjoint to the Lie Algebra
2 Killing Form; Scalar Product and Change of Basis in L
3 Totally Antisymmetric Structure Constants
4 Casimir Operator
IV Representations Induced in the State Space
A Conditions Imposed on Transformations in the State Space
B Wigner's Theorem
C Transformations of Observables
D Linear Representations in the State Space
E Phase Factors and Projective Representations
A_IV Finite-Dimensional Unitary Projective Representations of Related Lie Groups
1 Case Where G is Simply Connected
2 Case Where G is P-Connected
B_IV Uhlhorn-Wigner Theorem
1 Real Space
2 Complex Space
V Representations of the Galileo and Poincaré Groups: Mass, Spin and Energy
A Galileo Group
B Poincaré Group
A_V Some Properties of the Operators S and W_2
1 Operator S
2 Eigenvalues of the Operator W_2
B_V Geometric Displacement Group
1 Reminders: Classical Properties of Displacements
2 Associated Operators in the State Space
C_V Clean Lorentz Group
1 Link with the Group SL(2,C)
2 Small Group Associated with a Four-Vector
3 Operator W_2
D_V Space Reflections (Parity)
1 Action in Real Space
2 Associated Operator in the State Space
3 Retention of Parity
VI Construction of State Spaces and Wave Equations
A Galileo Group, Schrödinger Equation
B Poincaré Group, Klein-Gordon and Dirac Equations
A_VI Lagrangians of Wave Equations
1 Lagrangian of a Field
2 Schrödinger's Equation
3 Klein-Gordon Equation
4 Dirac's Equation
VII Irreducible Representations of the Group of Rotations, Spinors
A Irreducible Unitary Representations of the Group of Rotations
B Spin 1/2 Particles; Spinors
C Composition of the Kinetic Moments
A_VII Homorphism Between SU(2) and Rotation Matrices
1 Transformation of a Vector P Induced by an SU(2) Matrix
2 The Transformation is a Rotation
3 Homomorphism
4 Link to the Reasoning of Chapter VII
5 Link with Bivalent Representations
VIII Transformation of Observables by Rotation
A Vector Operators B Tensor Operators
C Wigner-Eckart Theorem
D Decomposition of the Density Matrix on Tensor Operators
A_VIII Basic Reminders on Classical Tensors
1 Vectors
2 Tensors
3 Properties
4 Tensoriality Criterion
5 Symmetric and Antisymmetric Tensors
6 Special Tensors
7 Irreducible Tensors
B_VIII Second Order Tensor Operators
1 Tensor Product of Two Vector Operators
2 Cartesian Components of the Tensor in the General Case
C_VIII Multipolar Moments
1 Electrical Multipole Moments
2 Magnetic Multipole Moments
3 Multipole Moments of a Quantum System for a Given Kinetic Moment Multiplicity J
IX Groups SU(2) and SU(3)
A System of Discernible but Equivalent Particles
B SU(2) Group and Isospin Symmetry
C Symmetry SU(3)
A_IX the Nature of a Particle Is Equivalent to an Internal Quantum Number
1 Partial or Total Antisymmetrization of a State Vector
2 Correspondence Between the States of Two Physical Systems
3 Physical Consequences
B_IX Operators Changing the Symmetry of a State Vector by Permutation
1 Fermions
2 Bosons
X Symmetry Breaking
A Magnetism, Breaking of the Rotation
I Symmetry Transformations
A Fundamental Symmetries
B Symmetries in Classical Mechanics C Symmetries in Quantum Mechanics
A_I Euler's and Lagrange's Views in Classical Mechanics
1 Euler's Point of View
2 Lagrange's Point of View
II Notions on Group Theory
A General Properties of Groups
B Linear Representations of a Group
A_II Residual Classes of a Subgroup; Quotient Group
1 Residual Classes on the Left
2 Quotient Group
III Introduction to Continuous Groups and Lie Groups
A General Properties B Examples
C Galileo and Poincaré Groups
A_III Adjoint Representation, Killing Form, Casimir Operator
1 Representation Adjoint to the Lie Algebra
2 Killing Form; Scalar Product and Change of Basis in L
3 Totally Antisymmetric Structure Constants
4 Casimir Operator
IV Representations Induced in the State Space
A Conditions Imposed on Transformations in the State Space
B Wigner's Theorem
C Transformations of Observables
D Linear Representations in the State Space
E Phase Factors and Projective Representations
A_IV Finite-Dimensional Unitary Projective Representations of Related Lie Groups
1 Case Where G is Simply Connected
2 Case Where G is P-Connected
B_IV Uhlhorn-Wigner Theorem
1 Real Space
2 Complex Space
V Representations of the Galileo and Poincaré Groups: Mass, Spin and Energy
A Galileo Group
B Poincaré Group
A_V Some Properties of the Operators S and W_2
1 Operator S
2 Eigenvalues of the Operator W_2
B_V Geometric Displacement Group
1 Reminders: Classical Properties of Displacements
2 Associated Operators in the State Space
C_V Clean Lorentz Group
1 Link with the Group SL(2,C)
2 Small Group Associated with a Four-Vector
3 Operator W_2
D_V Space Reflections (Parity)
1 Action in Real Space
2 Associated Operator in the State Space
3 Retention of Parity
VI Construction of State Spaces and Wave Equations
A Galileo Group, Schrödinger Equation
B Poincaré Group, Klein-Gordon and Dirac Equations
A_VI Lagrangians of Wave Equations
1 Lagrangian of a Field
2 Schrödinger's Equation
3 Klein-Gordon Equation
4 Dirac's Equation
VII Irreducible Representations of the Group of Rotations, Spinors
A Irreducible Unitary Representations of the Group of Rotations
B Spin 1/2 Particles; Spinors
C Composition of the Kinetic Moments
A_VII Homorphism Between SU(2) and Rotation Matrices
1 Transformation of a Vector P Induced by an SU(2) Matrix
2 The Transformation is a Rotation
3 Homomorphism
4 Link to the Reasoning of Chapter VII
5 Link with Bivalent Representations
VIII Transformation of Observables by Rotation
A Vector Operators B Tensor Operators
C Wigner-Eckart Theorem
D Decomposition of the Density Matrix on Tensor Operators
A_VIII Basic Reminders on Classical Tensors
1 Vectors
2 Tensors
3 Properties
4 Tensoriality Criterion
5 Symmetric and Antisymmetric Tensors
6 Special Tensors
7 Irreducible Tensors
B_VIII Second Order Tensor Operators
1 Tensor Product of Two Vector Operators
2 Cartesian Components of the Tensor in the General Case
C_VIII Multipolar Moments
1 Electrical Multipole Moments
2 Magnetic Multipole Moments
3 Multipole Moments of a Quantum System for a Given Kinetic Moment Multiplicity J
IX Groups SU(2) and SU(3)
A System of Discernible but Equivalent Particles
B SU(2) Group and Isospin Symmetry
C Symmetry SU(3)
A_IX the Nature of a Particle Is Equivalent to an Internal Quantum Number
1 Partial or Total Antisymmetrization of a State Vector
2 Correspondence Between the States of Two Physical Systems
3 Physical Consequences
B_IX Operators Changing the Symmetry of a State Vector by Permutation
1 Fermions
2 Bosons
X Symmetry Breaking
A Magnetism, Breaking of the Rotation
A Fundamental Symmetries
B Symmetries in Classical Mechanics C Symmetries in Quantum Mechanics
A_I Euler's and Lagrange's Views in Classical Mechanics
1 Euler's Point of View
2 Lagrange's Point of View
II Notions on Group Theory
A General Properties of Groups
B Linear Representations of a Group
A_II Residual Classes of a Subgroup; Quotient Group
1 Residual Classes on the Left
2 Quotient Group
III Introduction to Continuous Groups and Lie Groups
A General Properties B Examples
C Galileo and Poincaré Groups
A_III Adjoint Representation, Killing Form, Casimir Operator
1 Representation Adjoint to the Lie Algebra
2 Killing Form; Scalar Product and Change of Basis in L
3 Totally Antisymmetric Structure Constants
4 Casimir Operator
IV Representations Induced in the State Space
A Conditions Imposed on Transformations in the State Space
B Wigner's Theorem
C Transformations of Observables
D Linear Representations in the State Space
E Phase Factors and Projective Representations
A_IV Finite-Dimensional Unitary Projective Representations of Related Lie Groups
1 Case Where G is Simply Connected
2 Case Where G is P-Connected
B_IV Uhlhorn-Wigner Theorem
1 Real Space
2 Complex Space
V Representations of the Galileo and Poincaré Groups: Mass, Spin and Energy
A Galileo Group
B Poincaré Group
A_V Some Properties of the Operators S and W_2
1 Operator S
2 Eigenvalues of the Operator W_2
B_V Geometric Displacement Group
1 Reminders: Classical Properties of Displacements
2 Associated Operators in the State Space
C_V Clean Lorentz Group
1 Link with the Group SL(2,C)
2 Small Group Associated with a Four-Vector
3 Operator W_2
D_V Space Reflections (Parity)
1 Action in Real Space
2 Associated Operator in the State Space
3 Retention of Parity
VI Construction of State Spaces and Wave Equations
A Galileo Group, Schrödinger Equation
B Poincaré Group, Klein-Gordon and Dirac Equations
A_VI Lagrangians of Wave Equations
1 Lagrangian of a Field
2 Schrödinger's Equation
3 Klein-Gordon Equation
4 Dirac's Equation
VII Irreducible Representations of the Group of Rotations, Spinors
A Irreducible Unitary Representations of the Group of Rotations
B Spin 1/2 Particles; Spinors
C Composition of the Kinetic Moments
A_VII Homorphism Between SU(2) and Rotation Matrices
1 Transformation of a Vector P Induced by an SU(2) Matrix
2 The Transformation is a Rotation
3 Homomorphism
4 Link to the Reasoning of Chapter VII
5 Link with Bivalent Representations
VIII Transformation of Observables by Rotation
A Vector Operators B Tensor Operators
C Wigner-Eckart Theorem
D Decomposition of the Density Matrix on Tensor Operators
A_VIII Basic Reminders on Classical Tensors
1 Vectors
2 Tensors
3 Properties
4 Tensoriality Criterion
5 Symmetric and Antisymmetric Tensors
6 Special Tensors
7 Irreducible Tensors
B_VIII Second Order Tensor Operators
1 Tensor Product of Two Vector Operators
2 Cartesian Components of the Tensor in the General Case
C_VIII Multipolar Moments
1 Electrical Multipole Moments
2 Magnetic Multipole Moments
3 Multipole Moments of a Quantum System for a Given Kinetic Moment Multiplicity J
IX Groups SU(2) and SU(3)
A System of Discernible but Equivalent Particles
B SU(2) Group and Isospin Symmetry
C Symmetry SU(3)
A_IX the Nature of a Particle Is Equivalent to an Internal Quantum Number
1 Partial or Total Antisymmetrization of a State Vector
2 Correspondence Between the States of Two Physical Systems
3 Physical Consequences
B_IX Operators Changing the Symmetry of a State Vector by Permutation
1 Fermions
2 Bosons
X Symmetry Breaking
A Magnetism, Breaking of the Rotation