Lawrence C. Washington
Introduction to Cyclotomic Fields (eBook, PDF)
53,95 €
53,95 €
inkl. MwSt.
Sofort per Download lieferbar
27 °P sammeln
53,95 €
Als Download kaufen
53,95 €
inkl. MwSt.
Sofort per Download lieferbar
27 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
53,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
27 °P sammeln
Lawrence C. Washington
Introduction to Cyclotomic Fields (eBook, PDF)
- Format: PDF
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This text on a central area of number theory covers p-adic L-functions, class numbers, cyclotomic units, Fermat's Last Theorem, and Iwasawa's theory of Z_p-extensions. This edition contains a new chapter on the work of Thaine, Kolyvagin, and Rubin, including a proof of the Main Conjecture, as well as a chapter on other recent developments, such as primality testing via Jacobi sums and Sinnott's proof of the vanishing of Iwasawa's f-invariant.
- Geräte: PC
- ohne Kopierschutz
- eBook Hilfe
- Größe: 58.04MB
Andere Kunden interessierten sich auch für
- Lawrence C. WashingtonIntroduction to Cyclotomic Fields (eBook, PDF)62,95 €
- Serge LangCyclotomic Fields I and II (eBook, PDF)48,95 €
- S. LangCyclotomic Fields II (eBook, PDF)40,95 €
- Serge LangAlgebraic Number Theory (eBook, PDF)43,95 €
- S. LangCyclotomic Fields (eBook, PDF)40,95 €
- Universal Algebra and Lattice Theory (eBook, PDF)28,95 €
- H. KochAlgebraic Number Theory (eBook, PDF)57,95 €
-
-
-
This text on a central area of number theory covers p-adic L-functions, class numbers, cyclotomic units, Fermat's Last Theorem, and Iwasawa's theory of Z_p-extensions. This edition contains a new chapter on the work of Thaine, Kolyvagin, and Rubin, including a proof of the Main Conjecture, as well as a chapter on other recent developments, such as primality testing via Jacobi sums and Sinnott's proof of the vanishing of Iwasawa's f-invariant.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer New York
- Seitenzahl: 490
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461219347
- Artikelnr.: 44175947
- Verlag: Springer New York
- Seitenzahl: 490
- Erscheinungstermin: 6. Dezember 2012
- Englisch
- ISBN-13: 9781461219347
- Artikelnr.: 44175947
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
1 Fermat's Last Theorem.- 2 Basic Results.- 3 Dirichlet Characters.- 4 Dirichlet L-series and Class Number Formulas.- 5 p-adic L-functions and Bernoulli Numbers.- 5.1. p-adic functions.- 5.2. p-adic L-functions.- 5.3. Congruences.- 5.4. The value at s = 1.- 5.5. The p-adic regulator.- 5.6. Applications of the class number formula.- 6 Stickelberger's Theorem.- 6.1. Gauss sums.- 6.2. Stickelberger's theorem.- 6.3. Herbrand's theorem.- 6.4. The index of the Stickelberger ideal.- 6.5. Fermat's Last Theorem.- 7 Iwasawa's Construction of p-adic L-functions.- 7.1. Group rings and power series.- 7.2. p-adic L-functions.- 7.3. Applications.- 7.4. Function fields.- 7.5. µ = 0.- 8 Cyclotomic Units.- 8.1. Cyclotomic units.- 8.2. Proof of the p-adic class number formula.- 8.3. Units of$$mathbb{Q}left( {{zeta _p}} right)$$and Vandiver's conjecture.- 8.4. p-adic expansions.- 9 The Second Case of Fermat's Last Theorem.- 9.1. The basic argument.- 9.2. The theorems.- 10 Galois Groups Acting on Ideal Class Groups.- 10.1. Some theorems on class groups.- 10.2. Reflection theorems.- 10.3. Consequences of Vandiver's conjecture.- 11 Cyclotomic Fields of Class Number One.- 11.1. The estimate for even characters.- 11.2. The estimate for all characters.- 11.3. The estimate for hm-.- 11.4. Odlyzko's bounds on discriminants.- 11.5. Calculation of hm+.- 12 Measures and Distributions.- 12.1. Distributions.- 12.2. Measures.- 12.3. Universal distributions.- 13 Iwasawa's Theory of$${mathbb{Z}_p} -$$extensions.- 13.1. Basic facts.- 13.2. The structure of A-modules.- 13.3. Iwasawa's theorem.- 13.4. Consequences.- 13.5. The maximal abelian p-extension unramified outside p.- 13.6. The main conjecture.- 13.7. Logarithmic derivatives.- 13.8. Local units modulo cyclotomicunits.- 14 The Kronecker-Weber Theorem.- 15 The Main Conjecture and Annihilation of Class Groups.- 15.1. Stickelberger's theorem.- 15.2. Thaine's theorem.- 15.3. The converse of Herbrand's theorem.- 15.4. The Main Conjecture.- 15.5. Adjoints.- 15.6. Technical results from Iwasawa theory.- 15.7. Proof of the Main Conjecture.- 16 Miscellany.- 16.1. Primality testing using Jacobi sums.- 16.2. Sinnott's proof that µ = 0.- 16.3. The non-p-part of the class number in a$${mathbb{Z}_p} -$$extension.- 1. Inverse limits.- 2. Infinite Galois theory and ramification theory.- 3. Class field theory.- Tables.- 1. Bernoulli numbers.- 2. Irregular primes.- 3. Relative class numbers.- 4. Real class numbers.- List of Symbols.
1 Fermat's Last Theorem.- 2 Basic Results.- 3 Dirichlet Characters.- 4 Dirichlet L-series and Class Number Formulas.- 5 p-adic L-functions and Bernoulli Numbers.- 5.1. p-adic functions.- 5.2. p-adic L-functions.- 5.3. Congruences.- 5.4. The value at s = 1.- 5.5. The p-adic regulator.- 5.6. Applications of the class number formula.- 6 Stickelberger's Theorem.- 6.1. Gauss sums.- 6.2. Stickelberger's theorem.- 6.3. Herbrand's theorem.- 6.4. The index of the Stickelberger ideal.- 6.5. Fermat's Last Theorem.- 7 Iwasawa's Construction of p-adic L-functions.- 7.1. Group rings and power series.- 7.2. p-adic L-functions.- 7.3. Applications.- 7.4. Function fields.- 7.5. µ = 0.- 8 Cyclotomic Units.- 8.1. Cyclotomic units.- 8.2. Proof of the p-adic class number formula.- 8.3. Units of$$mathbb{Q}left( {{zeta _p}} right)$$and Vandiver's conjecture.- 8.4. p-adic expansions.- 9 The Second Case of Fermat's Last Theorem.- 9.1. The basic argument.- 9.2. The theorems.- 10 Galois Groups Acting on Ideal Class Groups.- 10.1. Some theorems on class groups.- 10.2. Reflection theorems.- 10.3. Consequences of Vandiver's conjecture.- 11 Cyclotomic Fields of Class Number One.- 11.1. The estimate for even characters.- 11.2. The estimate for all characters.- 11.3. The estimate for hm-.- 11.4. Odlyzko's bounds on discriminants.- 11.5. Calculation of hm+.- 12 Measures and Distributions.- 12.1. Distributions.- 12.2. Measures.- 12.3. Universal distributions.- 13 Iwasawa's Theory of$${mathbb{Z}_p} -$$extensions.- 13.1. Basic facts.- 13.2. The structure of A-modules.- 13.3. Iwasawa's theorem.- 13.4. Consequences.- 13.5. The maximal abelian p-extension unramified outside p.- 13.6. The main conjecture.- 13.7. Logarithmic derivatives.- 13.8. Local units modulo cyclotomicunits.- 14 The Kronecker-Weber Theorem.- 15 The Main Conjecture and Annihilation of Class Groups.- 15.1. Stickelberger's theorem.- 15.2. Thaine's theorem.- 15.3. The converse of Herbrand's theorem.- 15.4. The Main Conjecture.- 15.5. Adjoints.- 15.6. Technical results from Iwasawa theory.- 15.7. Proof of the Main Conjecture.- 16 Miscellany.- 16.1. Primality testing using Jacobi sums.- 16.2. Sinnott's proof that µ = 0.- 16.3. The non-p-part of the class number in a$${mathbb{Z}_p} -$$extension.- 1. Inverse limits.- 2. Infinite Galois theory and ramification theory.- 3. Class field theory.- Tables.- 1. Bernoulli numbers.- 2. Irregular primes.- 3. Relative class numbers.- 4. Real class numbers.- List of Symbols.