Topics and features:
- Provides numerous practical case studies using real-world data throughout the book
- Supports understanding through hands-on experience of solving data science problems using Python
- Describes techniques and tools for statistical analysis, machine learning, graph analysis, and parallel programming
- Reviews a range of applications of data science, including recommender systems and sentiment analysis of text data
- Provides supplementary code resources and data at an associated website
This practically-focused textbook provides an ideal introduction to the field for upper-tier undergraduate and beginning graduate students from computer science, mathematics, statistics, and other technical disciplines. The work is also eminently suitable for professionals on continuous education short courses, and to researchers following self-study courses.
Dr. Laura Igual is an Associate Professor at the Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Spain. Dr. Santi Seguí is an Assistant Professor at the same institution.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
"The book 'Introduction to Data Science' is built as a starter presentation of concepts, techniques and approaches that constitute the initial contact with data science for scientists ... . The style of the book recommends it to both undergraduates and postgraduates and the concluding remarks and references provide guidance for the next steps in the study of particular topics." (Irina Ioana Mohorianu, zbMATH, Vol. 1365.62003, 2017)