Introduction to Differential Calculus (eBook, ePUB)
Systematic Studies with Engineering Applications for Beginners
Alle Infos zum eBook verschenken
Introduction to Differential Calculus (eBook, ePUB)
Systematic Studies with Engineering Applications for Beginners
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Hier können Sie sich einloggen
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Enables readers to apply the fundamentals of differential calculus to solve real-life problems in engineering and the physical sciences Introduction to Differential Calculus fully engages readers by presenting the fundamental theories and methods of differential calculus and then showcasing how the discussed concepts can be applied to real-world problems in engineering and the physical sciences. With its easy-to-follow style and accessible explanations, the book sets a solid foundation before advancing to specific calculus methods, demonstrating the connections between differential calculus…mehr
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 6.88MB
- Ulrich L. RohdeIntroduction to Integral Calculus (eBook, ePUB)118,99 €
- Phil DykeTwo and Three Dimensional Calculus (eBook, ePUB)45,99 €
- Peter V. O'NeilSolutions Manual to Accompany Beginning Partial Differential Equations (eBook, ePUB)24,99 €
- Michael D. GreenbergOrdinary Differential Equations (eBook, ePUB)105,99 €
- Peter V. O'NeilBeginning Partial Differential Equations (eBook, ePUB)95,99 €
- Ulrich L. RohdeIntroduction to Differential Calculus (eBook, PDF)142,99 €
- Ulrich L. RohdeIntroduction to Integral Calculus (eBook, PDF)118,99 €
-
-
-
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
- Produktdetails
- Verlag: John Wiley & Sons
- Seitenzahl: 784
- Erscheinungstermin: 12. Januar 2012
- Englisch
- ISBN-13: 9781118130148
- Artikelnr.: 37353207
- Verlag: John Wiley & Sons
- Seitenzahl: 784
- Erscheinungstermin: 12. Januar 2012
- Englisch
- ISBN-13: 9781118130148
- Artikelnr.: 37353207
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
/
638 21.7 Most General Statement of L'Hospital's Theorem 644 21.8 Meaning of Indeterminate Forms 644 21.9 Finding Limits Involving Various Indeterminate Forms (by Expressing them to the Form 0/0 or
/
) 646 22 Extending the Mean Value Theorem to Taylor's Formula: Taylor Polynomials for Certain Functions 653 22.1 Introduction 653 22.2 The Mean Value Theorem For Second Derivatives: The First Extended MVT 654 22.3 Taylor's Theorem 658 22.4 Polynomial Approximations and Taylor's Formula 658 22.5 From Maclaurin Series To Taylor Series 667 22.6 Taylor's Formula for Polynomials 669 22.7 Taylor's Formula for Arbitrary Functions 672 23 Hyperbolic Functions and Their Properties 677 23.1 Introduction 677 23.2 Relation Between Exponential and Trigonometric Functions 680 23.3 Similarities and Differences in the Behavior of Hyperbolic and Circular Functions 682 23.4 Derivatives of Hyperbolic Functions 685 23.5 Curves of Hyperbolic Functions 686 23.6 The Indefinite Integral Formulas for Hyperbolic Functions 689 23.7 Inverse Hyperbolic Functions 689 23.8 Justification for Calling sinh and cosh as Hyperbolic Functions Just as sine and cosine are Called Trigonometric Circular Functions 699 Appendix A (Related To Chapter-2) Elementary Set Theory 703 Appendix B (Related To Chapter-4) 711 Appendix C (Related To Chapter-20) 735 Index 739
/
638 21.7 Most General Statement of L'Hospital's Theorem 644 21.8 Meaning of Indeterminate Forms 644 21.9 Finding Limits Involving Various Indeterminate Forms (by Expressing them to the Form 0/0 or
/
) 646 22 Extending the Mean Value Theorem to Taylor's Formula: Taylor Polynomials for Certain Functions 653 22.1 Introduction 653 22.2 The Mean Value Theorem For Second Derivatives: The First Extended MVT 654 22.3 Taylor's Theorem 658 22.4 Polynomial Approximations and Taylor's Formula 658 22.5 From Maclaurin Series To Taylor Series 667 22.6 Taylor's Formula for Polynomials 669 22.7 Taylor's Formula for Arbitrary Functions 672 23 Hyperbolic Functions and Their Properties 677 23.1 Introduction 677 23.2 Relation Between Exponential and Trigonometric Functions 680 23.3 Similarities and Differences in the Behavior of Hyperbolic and Circular Functions 682 23.4 Derivatives of Hyperbolic Functions 685 23.5 Curves of Hyperbolic Functions 686 23.6 The Indefinite Integral Formulas for Hyperbolic Functions 689 23.7 Inverse Hyperbolic Functions 689 23.8 Justification for Calling sinh and cosh as Hyperbolic Functions Just as sine and cosine are Called Trigonometric Circular Functions 699 Appendix A (Related To Chapter-2) Elementary Set Theory 703 Appendix B (Related To Chapter-4) 711 Appendix C (Related To Chapter-20) 735 Index 739