81,95 €
81,95 €
inkl. MwSt.
Sofort per Download lieferbar
41 °P sammeln
81,95 €
Als Download kaufen
81,95 €
inkl. MwSt.
Sofort per Download lieferbar
41 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
81,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
41 °P sammeln
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
This textbook is ideal for an undergraduate course on derivatives in a finance, economics, or financial mathematics programme. As well as covering all of the essential topics, the book also includes the basis of the numerical techniques most used in the financial industry, and their implementation in Python.
- Geräte: eReader
- ohne Kopierschutz
- eBook Hilfe
- Größe: 9.54MB
Andere Kunden interessierten sich auch für
- Elisa AlòsIntroduction to Financial Derivatives with Python (eBook, PDF)81,95 €
- Julien GuillodPython Programming for Mathematics (eBook, ePUB)47,95 €
- Avishek NagSurvival Analysis with Python (eBook, ePUB)20,95 €
- Ashwin RaoFoundations of Reinforcement Learning with Applications in Finance (eBook, ePUB)81,95 €
- Di WuData Mining with Python (eBook, ePUB)47,95 €
- C. K. DhaliwalPython Programming (eBook, ePUB)52,95 €
- Leonardo Azevedo ScarduaApplied Evolutionary Algorithms for Engineers using Python (eBook, ePUB)57,95 €
-
-
-
This textbook is ideal for an undergraduate course on derivatives in a finance, economics, or financial mathematics programme. As well as covering all of the essential topics, the book also includes the basis of the numerical techniques most used in the financial industry, and their implementation in Python.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 252
- Erscheinungstermin: 15. Dezember 2022
- Englisch
- ISBN-13: 9781000831979
- Artikelnr.: 66390790
- Verlag: Taylor & Francis
- Seitenzahl: 252
- Erscheinungstermin: 15. Dezember 2022
- Englisch
- ISBN-13: 9781000831979
- Artikelnr.: 66390790
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Elisa Alòs holds a Ph.D. in Mathematics from the University of Barcelona. She is an Associate Professor in the Department of Economics and Business at Universitat Pompeu Fabra (UPF) and a Barcelona GSE Affiliated Professor. Her research focus has been on the applications of the Malliavin calculus and the fractional Brownian motion in mathematical finance and volatility modelling since he past fourteen years.
Raúl Merino has been working full-time in the industry as Risk Quant since 2008. He is also an Associate Professor at Pompeu Fabra University (UPF) where he teaches the course "Financial Derivatives and Risk Management". Raul holds a Ph.D. in Mathematics from the University of Barcelona. In his Ph.D. he studied the use of decomposition formulas in stochastic volatility models. His research interests are stochastic analysis and applied mathematics, with a special focus on applications to mathematical finance.
Raúl Merino has been working full-time in the industry as Risk Quant since 2008. He is also an Associate Professor at Pompeu Fabra University (UPF) where he teaches the course "Financial Derivatives and Risk Management". Raul holds a Ph.D. in Mathematics from the University of Barcelona. In his Ph.D. he studied the use of decomposition formulas in stochastic volatility models. His research interests are stochastic analysis and applied mathematics, with a special focus on applications to mathematical finance.
1. Introduction. 1.1. Financial Markets. 1.2. Derivatives. 1.3. Time has a Value. 1.4. No-Arbitrage Principle. 1.5. Chapter's Digest. 1.6. Exercises. 2. Futures and Forwards. 2.1. Forward Contracts: Definitions. 2.2. Futures. 2.3. Why to use Forwards and Futures? 2.4. The Fair Delivery Price: The Forward Price. 2.5. Chapter's Digest. 2.6. Exercises. 3. Options. 3.1. Call and Put Options. 3.2. The Intrinsic Value of an Option. 3.3. Some Properties of Option Prices. 3.4. Speculation with Options. 3.5. Some Classical Strategies. 3.6. Draw your Strategy with Python. 3.7. Chapter's Digest. 3.8. Exercises. 4. Exotic Options. 4.1. Binary Options. 4.2. Forward Start Options. 4.3. Path-Dependent Options. 4.4. Spread and Basket Options. 4.5. Bermuda Options. 4.6. Chapter's Digest. 4.7. Exercises. 5. The Binomial Model. 5.1. The Single-Period Binomial Model. 5.2. The Multi-Period Binomial Model. 5.3. The Greeks in the Binomial Model. 5.4. Coding the Binomial Model. 5.5. Chapter's Digest. 5.6. Exercises. 6. A Continuous-Time Pricing Model. 6.1. Creating Some Intuition. 6.2. The Black-Scholes-Merton Framework. 6.3. THE BLACK-SCHOLES-MERTON EQUATION. 6.4. The Black-Scholes-Merton Formula. 6.5. The Black-Scholes-Merton Model from a Probabilistic Perspective. 6.6. The Black-Scholes-Merton Price and the Binomial Price. 6.7. The Greeks in the Black-Scholes-Merton Model. 6.8. Other Assets. 6.9. Drawbacks of the Black-Scholes-Merton Model. 6.10. Chapter's Digest. 6.11. Exercises. 7. Monte Carlo Methods. 7.1. The Need of General Option Pricing Tools. 7.2. Mathematical Foundations of Monte Carlo Methods. 7.3. Option Pricing with Monte Carlo Methods. 7.4. European Options that Depend on the Final Price of Two Assets. 7.5. Chapter's Digest. 7.6. Exercises. 8. The Volatility. 8.1. Historical Volatilities. 8.2. The Spot Volatility. 8.3. The Implied Volatility. 8.4. Chapter's Digest. 8.5. Exercises. 9. Replicating Portfolios. 9.1. Replicating Portfolios for the Binomial Model. 9.2. Replicating Portfolios for the Black-Scholes-Merton Model. 9.3. Chapter's Digest. 9.4. Exercises.
1. Introduction. 1.1. Financial Markets. 1.2. Derivatives. 1.3. Time has a Value. 1.4. No-Arbitrage Principle. 1.5. Chapter's Digest. 1.6. Exercises. 2. Futures and Forwards. 2.1. Forward Contracts: Definitions. 2.2. Futures. 2.3. Why to use Forwards and Futures? 2.4. The Fair Delivery Price: The Forward Price. 2.5. Chapter's Digest. 2.6. Exercises. 3. Options. 3.1. Call and Put Options. 3.2. The Intrinsic Value of an Option. 3.3. Some Properties of Option Prices. 3.4. Speculation with Options. 3.5. Some Classical Strategies. 3.6. Draw your Strategy with Python. 3.7. Chapter's Digest. 3.8. Exercises. 4. Exotic Options. 4.1. Binary Options. 4.2. Forward Start Options. 4.3. Path-Dependent Options. 4.4. Spread and Basket Options. 4.5. Bermuda Options. 4.6. Chapter's Digest. 4.7. Exercises. 5. The Binomial Model. 5.1. The Single-Period Binomial Model. 5.2. The Multi-Period Binomial Model. 5.3. The Greeks in the Binomial Model. 5.4. Coding the Binomial Model. 5.5. Chapter's Digest. 5.6. Exercises. 6. A Continuous-Time Pricing Model. 6.1. Creating Some Intuition. 6.2. The Black-Scholes-Merton Framework. 6.3. THE BLACK-SCHOLES-MERTON EQUATION. 6.4. The Black-Scholes-Merton Formula. 6.5. The Black-Scholes-Merton Model from a Probabilistic Perspective. 6.6. The Black-Scholes-Merton Price and the Binomial Price. 6.7. The Greeks in the Black-Scholes-Merton Model. 6.8. Other Assets. 6.9. Drawbacks of the Black-Scholes-Merton Model. 6.10. Chapter's Digest. 6.11. Exercises. 7. Monte Carlo Methods. 7.1. The Need of General Option Pricing Tools. 7.2. Mathematical Foundations of Monte Carlo Methods. 7.3. Option Pricing with Monte Carlo Methods. 7.4. European Options that Depend on the Final Price of Two Assets. 7.5. Chapter's Digest. 7.6. Exercises. 8. The Volatility. 8.1. Historical Volatilities. 8.2. The Spot Volatility. 8.3. The Implied Volatility. 8.4. Chapter's Digest. 8.5. Exercises. 9. Replicating Portfolios. 9.1. Replicating Portfolios for the Binomial Model. 9.2. Replicating Portfolios for the Black-Scholes-Merton Model. 9.3. Chapter's Digest. 9.4. Exercises.