Richard J. Trudeau
Introduction to Graph Theory (eBook, ePUB)
9,95 €
9,95 €
inkl. MwSt.
Sofort per Download lieferbar
5 °P sammeln
9,95 €
Als Download kaufen
9,95 €
inkl. MwSt.
Sofort per Download lieferbar
5 °P sammeln
Jetzt verschenken
Alle Infos zum eBook verschenken
9,95 €
inkl. MwSt.
Sofort per Download lieferbar
Alle Infos zum eBook verschenken
5 °P sammeln
Richard J. Trudeau
Introduction to Graph Theory (eBook, ePUB)
- Format: ePub
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei
bücher.de, um das eBook-Abo tolino select nutzen zu können.
Hier können Sie sich einloggen
Hier können Sie sich einloggen
Sie sind bereits eingeloggt. Klicken Sie auf 2. tolino select Abo, um fortzufahren.
Bitte loggen Sie sich zunächst in Ihr Kundenkonto ein oder registrieren Sie sich bei bücher.de, um das eBook-Abo tolino select nutzen zu können.
Aimed at "the mathematically traumatized," this text offers nontechnical coverage of graph theory, with exercises. Discusses planar graphs, Euler's formula, Platonic graphs, coloring, the genus of a graph, Euler walks, Hamilton walks, more. 1976 edition.
- Geräte: eReader
- mit Kopierschutz
- eBook Hilfe
- Größe: 8.18MB
Andere Kunden interessierten sich auch für
- I. M. GelfandFunctions and Graphs (eBook, ePUB)5,99 €
- Giulio FantiThe Shroud of Turin (eBook, ePUB)54,95 €
- Nora HartsfieldPearls in Graph Theory (eBook, ePUB)12,95 €
- Topics in Chromatic Graph Theory (eBook, ePUB)86,95 €
- Martin GroheDescriptive Complexity, Canonisation, and Definable Graph Structure Theory (eBook, ePUB)97,95 €
- Rick MckeonAmazing Fractal Images: Postcards from the Complex Plane (eBook, ePUB)2,99 €
- Joseph BreuerIntroduction to the Theory of Sets (eBook, ePUB)5,99 €
-
-
-
Aimed at "the mathematically traumatized," this text offers nontechnical coverage of graph theory, with exercises. Discusses planar graphs, Euler's formula, Platonic graphs, coloring, the genus of a graph, Euler walks, Hamilton walks, more. 1976 edition.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, D ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Guilford Publications
- Seitenzahl: 240
- Erscheinungstermin: 15. April 2013
- Englisch
- ISBN-13: 9780486318660
- Artikelnr.: 39539184
- Verlag: Guilford Publications
- Seitenzahl: 240
- Erscheinungstermin: 15. April 2013
- Englisch
- ISBN-13: 9780486318660
- Artikelnr.: 39539184
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Preface 1. Pure Mathematics Introduction
Euclidean Geometry as Pure Mathematics
Games
Why Study Pure Mathematics?
What's Coming
Suggested Reading 2. Graphs Introduction
Sets
Paradox
Graphs
Graph diagrams
Cautions
Common Graphs
Discovery
Complements and Subgraphs
Isomorphism
Recognizing Isomorphic Graphs
Semantics The Number of Graphs Having a Given nu
Exercises
Suggested Reading 3. Planar Graphs Introduction
UG, K subscript 5, and the Jordan Curve Theorem
Are there More Nonplanar Graphs?
Expansions
Kuratowski's Theorem
Determining Whether a Graph is Planar or Nonplanar
Exercises
Suggested Reading 4. Euler's Formula Introduction
Mathematical Induction
Proof of Euler's Formula
Some Consequences of Euler's Formula
Algebraic Topology
Exercises
Suggested Reading 5. Platonic Graphs Introduction
Proof of the Theorem
History
Exercises
Suggested Reading 6. Coloring Chromatic Number
Coloring Planar Graphs
Proof of the Five Color Theorem
Coloring Maps
Exercises
Suggested Reading 7. The Genus of a Graph Introduction
The Genus of a Graph
Euler's Second Formula
Some Consequences
Estimating the Genus of a Connected Graph
g-Platonic Graphs
The Heawood Coloring Theorem
Exercises
Suggested Reading 8. Euler Walks and Hamilton Walks Introduction
Euler Walks
Hamilton Walks
Multigraphs
The Königsberg Bridge Problem
Exercises
Suggested Reading Afterword Solutions to Selected Exercises Index Special symbols
Euclidean Geometry as Pure Mathematics
Games
Why Study Pure Mathematics?
What's Coming
Suggested Reading 2. Graphs Introduction
Sets
Paradox
Graphs
Graph diagrams
Cautions
Common Graphs
Discovery
Complements and Subgraphs
Isomorphism
Recognizing Isomorphic Graphs
Semantics The Number of Graphs Having a Given nu
Exercises
Suggested Reading 3. Planar Graphs Introduction
UG, K subscript 5, and the Jordan Curve Theorem
Are there More Nonplanar Graphs?
Expansions
Kuratowski's Theorem
Determining Whether a Graph is Planar or Nonplanar
Exercises
Suggested Reading 4. Euler's Formula Introduction
Mathematical Induction
Proof of Euler's Formula
Some Consequences of Euler's Formula
Algebraic Topology
Exercises
Suggested Reading 5. Platonic Graphs Introduction
Proof of the Theorem
History
Exercises
Suggested Reading 6. Coloring Chromatic Number
Coloring Planar Graphs
Proof of the Five Color Theorem
Coloring Maps
Exercises
Suggested Reading 7. The Genus of a Graph Introduction
The Genus of a Graph
Euler's Second Formula
Some Consequences
Estimating the Genus of a Connected Graph
g-Platonic Graphs
The Heawood Coloring Theorem
Exercises
Suggested Reading 8. Euler Walks and Hamilton Walks Introduction
Euler Walks
Hamilton Walks
Multigraphs
The Königsberg Bridge Problem
Exercises
Suggested Reading Afterword Solutions to Selected Exercises Index Special symbols
Preface 1. Pure Mathematics Introduction
Euclidean Geometry as Pure Mathematics
Games
Why Study Pure Mathematics?
What's Coming
Suggested Reading 2. Graphs Introduction
Sets
Paradox
Graphs
Graph diagrams
Cautions
Common Graphs
Discovery
Complements and Subgraphs
Isomorphism
Recognizing Isomorphic Graphs
Semantics The Number of Graphs Having a Given nu
Exercises
Suggested Reading 3. Planar Graphs Introduction
UG, K subscript 5, and the Jordan Curve Theorem
Are there More Nonplanar Graphs?
Expansions
Kuratowski's Theorem
Determining Whether a Graph is Planar or Nonplanar
Exercises
Suggested Reading 4. Euler's Formula Introduction
Mathematical Induction
Proof of Euler's Formula
Some Consequences of Euler's Formula
Algebraic Topology
Exercises
Suggested Reading 5. Platonic Graphs Introduction
Proof of the Theorem
History
Exercises
Suggested Reading 6. Coloring Chromatic Number
Coloring Planar Graphs
Proof of the Five Color Theorem
Coloring Maps
Exercises
Suggested Reading 7. The Genus of a Graph Introduction
The Genus of a Graph
Euler's Second Formula
Some Consequences
Estimating the Genus of a Connected Graph
g-Platonic Graphs
The Heawood Coloring Theorem
Exercises
Suggested Reading 8. Euler Walks and Hamilton Walks Introduction
Euler Walks
Hamilton Walks
Multigraphs
The Königsberg Bridge Problem
Exercises
Suggested Reading Afterword Solutions to Selected Exercises Index Special symbols
Euclidean Geometry as Pure Mathematics
Games
Why Study Pure Mathematics?
What's Coming
Suggested Reading 2. Graphs Introduction
Sets
Paradox
Graphs
Graph diagrams
Cautions
Common Graphs
Discovery
Complements and Subgraphs
Isomorphism
Recognizing Isomorphic Graphs
Semantics The Number of Graphs Having a Given nu
Exercises
Suggested Reading 3. Planar Graphs Introduction
UG, K subscript 5, and the Jordan Curve Theorem
Are there More Nonplanar Graphs?
Expansions
Kuratowski's Theorem
Determining Whether a Graph is Planar or Nonplanar
Exercises
Suggested Reading 4. Euler's Formula Introduction
Mathematical Induction
Proof of Euler's Formula
Some Consequences of Euler's Formula
Algebraic Topology
Exercises
Suggested Reading 5. Platonic Graphs Introduction
Proof of the Theorem
History
Exercises
Suggested Reading 6. Coloring Chromatic Number
Coloring Planar Graphs
Proof of the Five Color Theorem
Coloring Maps
Exercises
Suggested Reading 7. The Genus of a Graph Introduction
The Genus of a Graph
Euler's Second Formula
Some Consequences
Estimating the Genus of a Connected Graph
g-Platonic Graphs
The Heawood Coloring Theorem
Exercises
Suggested Reading 8. Euler Walks and Hamilton Walks Introduction
Euler Walks
Hamilton Walks
Multigraphs
The Königsberg Bridge Problem
Exercises
Suggested Reading Afterword Solutions to Selected Exercises Index Special symbols