The book introduces the principles of mathematical modeling in science, engineering, and social science as well as basic skills of computer programming. The book is aimed at majors in STEM disciplines that need to understand how to create, analyze, and test mathematical models.
Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.
Gordon (Ohio State Univ.) and Guilfoos (Ohio Supercomputer Center) provide a practical introduction to the techniques involved in developing computer models and simulating those models. The emphasis in the text is on engineering applications, but natural and social science applications are addressed as well. The presentation is purposely constrained to a depth of coverage suitable for a first undergraduate course in the subject, with useful pointers for students who wish to visit the subject more deeply. The authors do a good job of introducing two computing environments for developing models and simulating them: the MATLAB commercial product and the freely available Python programming language. By judicious choice of Python libraries, the presentation of the two environments are virtually identical, leaving the choice of environment up to the instructor (or student). Readers using Python will need to correct minor errors in the text regarding how to set up the recommended Anaconda environment. Or, they might profitably choose simply to use the standard command line and code editor interface for that language.
--C. Vickery, Queens College of CUNY (CHOICE)
--C. Vickery, Queens College of CUNY (CHOICE)