74,95 €
74,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
37 °P sammeln
74,95 €
74,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
37 °P sammeln
Als Download kaufen
74,95 €
inkl. MwSt.
Sofort per Download lieferbar
payback
37 °P sammeln
Jetzt verschenken
74,95 €
inkl. MwSt.
Sofort per Download lieferbar

Alle Infos zum eBook verschenken
payback
37 °P sammeln
  • Format: PDF

This book examines single-electron circuits as an introduction to the rapidly expanding field of nanoelectronics. It discusses both the analysis and synthesis of circuits with the nanoelectronic metallic single-electron tunneling (SET) junction device. The basic physical phenomena under consideration are the quantum mechanical tunneling of electron

  • Geräte: PC
  • ohne Kopierschutz
  • eBook Hilfe
  • Größe: 71.69MB
Produktbeschreibung
This book examines single-electron circuits as an introduction to the rapidly expanding field of nanoelectronics. It discusses both the analysis and synthesis of circuits with the nanoelectronic metallic single-electron tunneling (SET) junction device. The basic physical phenomena under consideration are the quantum mechanical tunneling of electron

Dieser Download kann aus rechtlichen Gründen nur mit Rechnungsadresse in A, B, BG, CY, CZ, D, DK, EW, E, FIN, F, GR, HR, H, IRL, I, LT, L, LR, M, NL, PL, P, R, S, SLO, SK ausgeliefert werden.

Autorenporträt
Jaap Hoekstra was born in Amsterdam, the Netherlands, in 1955. He received an MSc in experimental physics from the University of Amsterdam and a PhD degree for research on (junction) charge-coupled devices, involving device physics, device development and subsystem concepts, from the Delft University of Technology, the Netherlands. From 1988 to 1995 he was at the Computer Architecture Laboratory at the TU-Delft working in the field of artificial neural networks. From 1996 to 1997 he worked on chaotic dynamics in power systems at the laboratory of Electrical Power Systems. In April 1997 he joined the Electronic Research Laboratory, where he is currently involved in research projects on artificial neural nets, biologic-inspired networks, neuromorphic circuits, nanoscale electronic devices, and single-electron tunneling devices.